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Abstract. In each of the 10 cases with propagators of unit or zero mass, the finite part of the scalar 3-loop
tetrahedral vacuum diagram is reduced to 4-letter words in the 7-letter alphabet of the 1-forms Ω := dz/z
and ωp := dz/(λ−p − z), where λ is the sixth root of unity. Three diagrams yield only ζ(Ω3ω0) = 1

90π4.
In two cases π4 combines with the Euler-Zagier sum ζ(Ω2ω3ω0) =

∑
m>n>0(−1)m+n/m3n; in three cases

it combines with the square of Clausen’s Cl2(π/3) = = ζ(Ωω1) =
∑

n>0 sin(πn/3)/n2. The case with 6
masses involves no further constant; with 5 masses a Deligne-Euler-Zagier sum appears: < ζ(Ω2ω3ω1) =∑

m>n>0(−1)m cos(2πn/3)/m3n. The previously unidentified term in the 3-loop rho-parameter of the
standard model is merely D3 = 6ζ(3)−6Cl22(π/3)− 1

24π4. The remarkable simplicity of these results stems
from two shuffle algebras: one for nested sums; the other for iterated integrals. Each diagram evaluates
to 10 000 digits in seconds, because the primitive words are transformable to exponentially convergent
single sums, as recently shown for ζ(3) and ζ(5), familiar in QCD. Those are SC∗(2) constants, whose
base of super-fast computation is 2. Mass involves the novel base-3 set SC∗(3). All 10 diagrams reduce to
SC∗(3)∪SC∗(2) constants and their products. Only the 6-mass case entails both bases.

1 Introduction

This work concerns a remarkable fusion of number, topol-
ogy, algebra, and computation, revealed by new results for
the single-scale massive 3-loop scalar vacuum diagram

V (r1 . . . r6) :=
∫

[dp]
∫

[dk]
∫

[dl] P1(k)P2(p + k)

×P3(k − l)P4(l)P5(p + l)P6(p) (1)

where Pj(p) := 1/(p2 + m2rj) is a massive or massless
propagator, with r2

j = rj , and the integrals are over D :=
4 − 2ε euclidean dimensions, with norm p2 and a measure
[1]

[dl] :=
dDl

mD−4πD/2Γ (1 + ε)
(2)

that removes the irrelevant constants log(4π/m) and γ =
−Γ ′(1) as D → 4. The symmetry group of (1) is that of
the tetrahedron, S4, whose generators are illustrated in
Fig. 1. There are 10 distinct colourings of the tetrahedron
by mass, illustrated in Fig. 2. The massive lines in V2A

and V2N are adjacent and non-adjacent, respectively; in
the dual cases, V4A and V4N , it is the massless lines that
are adjacent and non-adjacent; in cases V3T , V3S and V3L,
the massive lines form a triangle, star and line, and hence
the massless lines form a star, triangle and line.
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Fig. 1. Symmetries of the tetrahedron

In Sect. 2 we review previous work, which determined
[1–3] only 4 of the 10 finite parts analytically. Sections 3
and 4 give our method and results for all 10 diagrams.
From them one may obtain results for all three-loop di-
agrams that are dominated by a single large mass, such
as the top-quark mass [4,5], when the external momenta
are small compared with that mass. Sections 5 and 6
give methods and results for the underlying mathematical
structure [6,7]. Section 7 highlights the most remarkable
of the many findings.

2 Previous results and new clues

In each case, j, we shall evaluate and analyze the finite
part of

Vj =
(

1
3ε

+ 1
)

6ζ(3) + 3ζ(4) − Fj + O(ε) (3)
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Fig. 2. Colourings of the tetrahedron by mass (denoted by a blob)

obtaining simple results for the 6 cases that were previ-
ously unknown. In (3),

Fj := lim
ε→0

(V1 − Vj) ≥ 0 (4)

is a scheme-independent constant, with F1 = 0 by defini-
tion and Fj > 0 otherwise, since the effect of more than
one mass in Vj is to decrease the value of the positive
integrand, in euclidean momentum space. The remaining
terms in (3) were determined from the complete result for
V1 in D dimensions, which involves only Γ functions.

Precisely three of the 10 vacuum diagrams may be re-
duced to Γ functions, using integration by parts for mas-
sive [1] and massless [2] subgraphs. A result for V1 follows
immediately from the massless two-point function of [2].
We gave the method for V3T , with three masses forming a
triangle, in [1]. In an impressive analysis [3] of integration
by parts for all 10 cases, Leo Avdeev, sadly now deceased,
identified V2A, with two adjacent masses, as a third Γ -
reducible case. The results of the present work show that
there are no more. Performing the algebra, we obtained

3ε4(1 − ε)(1 − 2ε)V1 =
G3,−3G−1,−1

G1,−2
− G3,−1G2,−1

G1,1
(5)

6ε4(1 − ε)(1 − 2ε)V2A =
G3,−1(G2,−1−3G2,1+2G2,2)

G1,1
(6)

4ε4(1 − ε)(1 − 2ε)V3T =
G3,−1G2,2

G1,1
− 1 (7)

with

Gµ,ν :=
Γ (1 + µε)Γ (1 + νε)

Γ (1 + µε + νε)
= 1 − µνζ(2)ε2 + µν(µ + ν)ζ(3)ε3

−µν(µ2 + 1
4µν + ν2)ζ(4)ε4 + O(ε5) (8)

yielding only ζ(4) = 1
90π4 at O(ε4). The resultant values

F1 = 0 (9)
F2A = 8ζ(4) (10)
F3T = 12ζ(4) (11)

provide useful tests of the methods that we use later.

In addition to V3T , we obtained in [1] a reduction to
3F2 series of V4N , in the QED case with 4 massive (elec-
tron) lines and two massless (photon) lines that are not
adjacent. The complete result, in D := 4− 2ε dimensions,
is

3V4N + 4V3T

2
=

W (1, 1; 1, 0) − W (1, 0; 1, 1)
ε2(1 − ε)(1 − 2ε)

(12)

in terms of Saalschützian hypergeometric series of the
form [1]

W (µ, ν;α, β) := 3F2
( 1

2 − µε, 1
2 − νε, 1; 3

2 + αε, 3
2 + βε; 1

)( 1
2 + αε

)
( 1
2 + βε)

(13)
constrained by wreath-product symmetry. They generate
polylogarithmic ladders [6] that enable us to compute the
ten millionth hexadecimal digits of the QCD constants
ζ(3) and ζ(5). The expansion of (13) yields [1] Li4( 1

2 ) :=∑
n>0(

1
2 )n/n4 at O(ε2). At O(εn−2) one encounters alter-

nating Euler sums [7] of weight n, which cannot [6] be
reduced to Lin( 1

2 ) for n ≥ 6. The result at weight n = 4
is [1]

B4 : =
1
2

(V4N − V3T ) = 16 Li4

(
1
2

)
+

2
3

log4 2

−2
3
π2 log2 2 − 13

180
π4 + O(ε) (14)

for the finite combination that enters the 3-loop QCD ra-
diative corrections to the electroweak rho-parameter [4,5].
These also entail the two-loop constant defined in [8] as

S2 :=
∑
n≥0

2n + 1
(3n + 1)2(3n + 2)2

=
2

33/2 Cl2(2π/3) =
4

35/2 Cl2(π/3) (15)

which enters the finite part of the dimensionally regular-
ized rising-sun two-loop diagram with 3 equal masses [9]
and involves the maximum value, Cl2(π/3), of the weight-
2 case of Clausen’s polylogarithm Cl2m(θ) := = Li2m

(exp(iθ)) =
∑

n>0 sin(nθ)/n2m. An analysis of the rising-
sun two-point function in D dimensions was given with
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Jochem Fleischer and Oleg Tarasov in [10]. At zero exter-
nal momentum, we obtained

1
(3ε)2

{
1 − (1 − 2ε) 2F1

(
1, ε;

3
2
;
1
4

)
− 2π

3ε+1/2B(ε, ε)

}
= S2 + O(ε) (16)

with a hypergeometric series and an Euler Beta function
combining to yield (15) as D → 4, in agreement with D-
dimensional analysis of the 2-loop vacuum diagram [11].

In the course of the current investigations, we proved
that S2 is, most remarkably, an exponentially convergent
sum:

S2 =
4
81

∑
n≥0

(
− 1

27

)n{ 9
(6n + 1)2

− 9
(6n + 2)2

− 12
(6n + 3)2

− 3
(6n + 4)2

+
1

(6n + 5)2

}
(17)

which yielded 10 000 decimal places in 35 seconds on a 333
MHz workstation.

Following [12] we say that if the dth digit in base b

of a constant C is computable in time = O(d logT d) and
space = O(logS d), then C ∈ SC∗(b). Then (17) implies
that S2 ∈ SC∗(3), since the inverse powers of 3 are trivial
in base b = 3 and there is an SC∗ algorithm [12] for the
rest of the summand, with logarithmic exponents that are
merely T = 3, for time, and S = 1, for memory.

Mathematical interest arose from the base-2 discovery
[12] of David Bailey, Peter Borwein and Simon Plouffe that
{π, π2, log 2, log2 2} ⊂ SC∗(2). Very recently [6], we added
14 significant constants to their list. It is now proven [6]
that

{πj logk 2 | j + k ≤ 3} ∪ {π2j logk 2 | 2j + k ≤ 5}
∪ {G, ζ(3), ζ(5)} ⊂ SC∗(2) (18)

where G := = Li2(i) is Catalan’s constant, while ζ(3) and
ζ(5) are intensely familiar, from massless 3-loop QCD.
Amusingly (but not very usefully) the pentalogarithms
of [6] enabled us to compute the 64 hexadecimal digits
of ζ(5) that begin at the 107th place, while less than 104

decimal digits had been tabulated.
It came, however, as an utter surprise that a Feynman

diagram with 3 masses should choose b = 3 as its base of
super-fast computability. In this paper, the focus is not on
digits, in any base, but on the novel connection between
the topology of the diagram and the type of constant in
its value. We take very seriously the fact that 3 masses
generate a two-loop constant S2 ∈ SC∗(3), even though
we have no interest in its ternary digits.

It follows from (11), (14), (18) that the three-loop di-
agram V4N , with 4 massive lines and two non-adjacent
massless lines, has a finite part F4N ∈ SC∗(2). These re-
markable connections between the base of fastest com-
putability and the number of massive lines will be pur-
sued, vigorously, at three loops. As an example, we cite
the case of the constant defined, in the MS scheme, by

Leo Avdeev, Jochem Fleischer, Sergei Mikhailov and Oleg
Tarasov as [4]

D3 := V 3L := lim
ε→0

(
V3L − 2ζ(3)

ε

)
(19)

which is the only constant in the three-loop QCD correc-
tions to the electro-weak rho-parameter of the standard
model that had not been identified analytically, though a
22-digit value was given in [4], with the first 6 digits con-
firmed by [5]. As one of many new results in this paper we
shall show, in Sect. 4.2.2, that it reduces to zeta values,
together with the square of the SC∗(3) constant (17), as
befits the 3 massive lines of V3L.

It was the occurrence of Cl2(π/3) := = Li2(exp(iπ/3))
at two loops that also alerted us to the possibility of re-
ducing the finite parts of all three-loop single-scale vac-
uum diagrams to a (very) few weight-4 primitives of a
pair of shuffle algebras involving the sixth root of unity
λ := exp(iπ/3) = (1 + i

√
3)/2. In the case of constants

linked [6] to SC∗(2), namely Euler-Zagier sums [7,13], the
operation of this pair of algebras is fairly well understood
[14]. Thanks to advice from Pierre Deligne, I was led to
suppose that an extension to complex-valued sums involv-
ing λ might result in a simple set of results for three-loop
diagrams previously supposed too complicated for exact
analysis. Thanks to encouragement from Dirk Kreimer, to
take most seriously the idea of a connection [15] between
the topology of a diagram and its value, I was motivated to
calculate all 10 diagrams, and found that all are reducible
to primitives of the structure that is so tightly constrained
by the pair of shuffle algebras. Thanks to David Bailey’s
integer-relation finder pslq [16], I was able to relate these
primitives to constants in SC∗(3)∪SC∗(2). Sections 5 and
6 contain some of the large number of algebraic, analyti-
cal, and numerical discoveries that resulted. But first, and
foremost, Sects. 3 and 4 give details of the field-theory
calculations1 that both motivated and enabled the more
abstract mathematics.

In contrast to the findings, the method of calculation
was prosaic [17,18], requiring only the Cutkosky rules,
Cauchy’s theorem, and a large amount of perspiration.

3 Dispersive method

Our method is strictly 4-dimensional, exploiting the dis-
persive results of [8]. Defining the finite two-point function

I(r1 . . . r5; p2/m2) :=
p2

π4

∫
d4k

∫
d4l P1(k)P2(p + k)

×P3(k − l)P4(l)P5(p + l) (20)

in 4 dimensions, we obtain
1 Readers concerned with mathematical structure may wish

to skip to the results in Sect. 4.6. Yet to do so would be to
miss out on what is involved in the discipline of perturbative
quantum field theory
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V (r1 . . . r5, 0) − V (r1 . . . r5, 1)

=
∫ ∞

0
dx I(r1 . . . r5;x) ×

{
1
x

− 1
x + 1

}
+ O(ε) (21)

for the difference of vacuum diagrams with a massless
and massive sixth propagator.

Suppressing the parameters r1 . . . r5, temporarily, we
exploit the dispersion relation

I(x) =
∫ ∞

s0

ds σ(s)
{

1
s + x

− 1
s

}
(22)

where −2πiσ(s) = I(−s + i0) − I(−s − i0) is the dis-
continuity across the cut [−∞,−s0] on the negative axis.
Integration by parts then gives

I(x) =
∫ ∞

s0

ds σ′(s)
{

− log
(
1 +

x

s

)
+ log

(
1 +

x

s0

)}
(23)

where the constant term in the logarithmic weight func-
tion may be dropped if σ(s0) = 0, as occurs when s0 = 0.
As x → ∞, we obtain the universal asymptotic value

6ζ(3) = I(∞) =
∫ ∞

s0

ds σ′(s) {log(s) − log(s0)} (24)

with the log(s0) term dropped when s0 = 0. The finite
difference in (21) is obtained from (23) as∫ ∞

0
dx I(x)

{
1
x

− 1
x + 1

}
=
∫ ∞

s0

ds σ′(s) {L2(s) − L2(s0)}
(25)

with a dilogarithmic weight function

L2(s) :=
∫ ∞

0

dx

x(x + 1)
log
(

1 + x

1 + x/s

)
= Li2(1 − 1/s) = −1

2
log2(s) − Li2(1 − s) (26)

that is chosen to satisfy L2(1) = 1, thus enabling one
to drop L2(s0) for s0 = 0 and s0 = 1, which covers all
the cases with N ≤ 3 massive particles in the two-point
function, and hence N +1 ≤ 4 massive particles in vacuum
diagrams.

We now prove that the two terms in the weight func-
tion (26) can be separated to yield the finite parts of the
vacuum diagrams combined in (21), as follows:

F (r1 . . . r5, 0) =
1
2

∫ ∞

s0

ds σ′(r1 . . . r5; s)

×{log2(s) − log2(s0)
}

(27)

F (r1 . . . r5, 1) = −
∫ ∞

s0

ds σ′(r1 . . . r5; s)

× {Li2(1 − s) − Li2(1 − s0)} (28)

with constant terms in the weight functions that are in-
ert when s0 = 0 and when s0 = 1. The proof uses the
representation

I(x) = 6ζ(3) +
∫ ∞

s0

ds σ′(s) {− log(x + s) + log(x + s0)}
(29)

in which the asymptotic value (24) is subtracted. Then
one obtains∫ ∞

0
dx

I(∞) − I(x)
x + 1

= −
∫ ∞

s0

ds σ′(s) {Li2(1 − s) − Li2(1 − s0)} (30)

which establishes the validity of (28), up to a possible uni-
versal constant. However this constant must vanish, since
in the case rj = 0 the left-hand side of (28) vanishes, by
virtue of the definition (4), and the left-hand side of (30)
vanishes, because the massless two-point function coin-
cides with the asymptotic value, 6ζ(3). The first result,
(27), then follows from (28), using (25), (26). It implies a
sum rule for the two-point functions with a single mass,
which we shall verify by explicit calculation.

It is now clear that a dilog is needed to extract a finite
part from σ′, when the sixth line is massive, whereas the
square of a log performs the job when the sixth line is
massless. For a vacuum diagram with N + 1 < 6 massive
lines, one has a choice of method: to include only N mas-
sive lines in the two-point function, thus avoiding elliptic
integrals [8] in σ′; or to include all N + 1 masses, thereby
avoiding a dilog. We found it better to avoid elliptic in-
tegrals, since they are tedious to program, though speedy
to compute by the process of arithmetic-geometric mean
[8].

4 Calculation of diagrams

There are 13 distinct cases of the two-point function (20)
with at least one massive particle. We denote the spectral
densities by

σ1(s) := σ(1, 0, 0, 0, 0; s)
σ3(s) := σ(0, 0, 1, 0, 0; s)

σ12(s) := σ(1, 1, 0, 0, 0; s)
σ13(s) := σ(1, 0, 1, 0, 0; s)
σ14(s) := σ(1, 0, 0, 1, 0; s)
σ15(s) := σ(1, 0, 0, 0, 1; s)
σ12(s) := σ(0, 0, 1, 1, 1; s)
σ13(s) := σ(0, 1, 0, 1, 1; s)
σ14(s) := σ(0, 1, 1, 0, 1; s)
σ15(s) := σ(0, 1, 1, 1, 0; s)
σ1(s) := σ(0, 1, 1, 1, 1; s)
σ3(s) := σ(1, 1, 0, 1, 1; s)
σ(s) := σ(1, 1, 1, 1, 1; s)

where the subscripts of σmassive indicate the massive lines,
while those of σmassless show the massless lines. Thus ((27),
(28)) provide 26 ways to evaluate 10 finite parts of vacuum
diagrams, with 16 checks available. Table 1 decrypts the 26
integrals to the 10 tetrahedral topologies. Since only σ′

15,
σ′

1 and σ′ involve an elliptic integral, there is a systematic
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Table 1. Integral to diagram dictionary

density σ1 σ3 σ12 σ13 σ14 σ15 σ12 σ13 σ14 σ15 σ1 σ3 σ
integral (27) V1 V1 V2A V2A V2A V2N V3T V3L V3S V3L V4A V4N V5

integral (28) V2A V2N V3S V3L V3T V3L V4A V4A V4A V4N V5 V5 V6

polylog route to all finite parts, save that of the totally
massive case, V6.

Specializing the analysis of [8] to cases with r2
j = rj ,

we obtain

σ′(r1 . . . r5; s)
=
{
σ′

a(r1 . . . r5; s) Θ
(
s − (r1 + r2)2

)
+ (1 ↔ 4, 2 ↔ 5)

}
+
{
σ′

b(r1 . . . r5; s) Θ
(
s − (r2 + r3 + r4)2

)
+(1 ↔ 2, 4 ↔ 5)}

σ′
a(r1 . . . r5; s)

:= 2<
∫ ∞

(r4+r5)2
dx

T (x, r1, r2, r3, r4, r5)
∆(s, r1, r2)

∂

∂x

×
(

∆(x, r1, r2)
x − s + i0

)
(31)

σ′
b(r1 . . . r5; s)

:= 2<
∫ (

√
s−r2)2

(r3+r4)2
dx

∂

∂s

(
T (x, s, r2, r5, r4, r3)

x − r1 + i0

)
(32)

T (s, a, b, c, d, e) := arctanh

×
(

∆(s, a, b)∆(s, d, e)
x2 − x(a + b − 2c + d + e) + (a − b)(d − e)

)
(33)

∆(a, b, c)

:=
√

a2 + b2 + c2 − 2ab − 2bc − 2ca (34)

with integration by parts in (31) giving a logarithmic re-
sult, in all cases, and differentiation in (32) giving a loga-
rithmic result when r1r3r5 = r2r3r4 = 0, i.e. when there
is no intermediate state with 3 massive particles.

4.1 Euler sums in vacuum diagrams
with two massive lines

With two massive particles in the vacuum diagram, we
need only one in the two-point function, leading to very
simple results for the derivative of the spectral density. In
particular, the result

s σ′
1(s) =

{
µ(s) for s ∈ [0, 1]

−µ(1/s) for s ∈ [1,∞] (35)

was obtained in [8], in terms of a logarithmic function

µ(x) := log(1 − x) +
x

1 − x
log(x) (36)

that will re-appear in other cases. It is equally simple to
obtain

s σ′
3(s) =

{
ν(s) for s ∈ [0, 1]

−ν(1/s) for s ∈ [1,∞] (37)

with
ν(x) :=

2x

1 + x
log(x) (38)

whose denominator will be shown to produce alternating
Euler sums in F2N .

The change of sign in (35), (37), under the conformal
transformation s → 1/s, guarantees the sum rules

0 =
∫ ∞

0
ds σ′

k(s) (39)

0 =
∫ ∞

0
ds σ′

k(s) log2(s) (40)

0 =
∫ ∞

0
ds σ′

k(s)
s + 1
s − 1

log(s) (41)

for k = 1 and k = 3. The first confirms that σk(0) = 0,
allowing constant terms to be omitted from the weight
functions of (24), (27), (28). The second gives F1 = 0 in
(27), as required by the definition (4). The third is the
N = 1 case of the general sum rule [8]

0 =
∫ ∞

s0

ds σ′(s)
{

s + N

s − 1
log(s) − s0 + N

s0 − 1
log(s0)

}
(42)

obtained by considering finite diagrams in which one mas-
sive line is doubled, by differentiation w.r.t. m2. It applies
when the two-point function contains N massive lines and
the N + 1 massive lines of the corresponding vacuum dia-
gram, with a massive sixth line, are all equivalent, as is the
case for V2A, V2N , V3S , V3T , V4N and V6. Hence the final
line of Table 1 shows that (42) applies to σ1, σ3, σ12, σ14,
σ15 and σ, with the last two involving elliptic integrals.

The sum rules

6ζ(3)=2
∫ 1

0

dx log(x)
x

µ(x)=2
∫ 1

0

dx log(x)
x

ν(x) (43)

follow from (24) and are easily verified analytically. Less
trivial are the quadrilogarithms

F2A =
∫ 1

0

dx

x
{Li2(1 − 1/x) − Li2(1 − x)} µ(x) (44)

F2N =
∫ 1

0

dx

x
{Li2(1 − 1/x) − Li2(1 − x)} ν(x) (45)

that result from (28).
The first may be evaluated analytically by the follow-

ing systematic method. Using

−1
2

log2(x) − Li2(1 − 1/x)

= Li2(1 − x) = ζ(2) − Li2(x) − log(1 − x) log(x) (46)
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one may transform the integrand to products of log(x),
Li0(x) := x/(1 − x), Li1(x) := − log(1 − x) and Li2(x) :=∫ x

0 (dy/y) Li1(y). Then the expansion Lik(x) =∑
n>0 xn/nk makes the integration trivial and produces

non-alternating Euler sums of weight 4, all of which are
proven [13] to evaluate to rational multiples of π4, with

1
90

π4 = ζ(4) = ζ(2, 1, 1) = 4ζ(3, 1) =
4
3
ζ(2, 2) (47)

where we use the notation of [13] for the non-alternating
Euler sum

ζ(s1 . . . sk) :=
∑

nj>nj+1>0

k∏
j=1

1
n

sj

j

(48)

which is also referred to as a multiple zeta value [19] of
depth k and weight

∑
j sj . From (44), (47) we obtain

F2A =2
∫ 1

0

dx

x

{
1
4

log2(x) + ζ(2) − Li2(x) + Li1(x) log(x)
}

× {Li1(x) − Li0(x) log(x)} = 8ζ(4) (49)

in agreement with (10).
We are also able systematically to evaluate all Euler

sums produced by

F2N = 4
∫ 1

0

dx

x

{
1
4

log2(x) + ζ(2)

− Li2(x) + Li1(x) log(x)
}

Li0(−x) log(x) (50)

for the finite part of the vacuum diagram with two massive
line that are non-adjacent. Now, however, we encounter
the wider [7] world of sums of the form

ζ

(
s1 . . . sk

σ1 . . . σk

)
:=

∑
nj>nj+1>0

k∏
j=1

σ
nj

j

n
sj

j

(51)

which involves a string of signs, σj = ±1, written below
the string of exponents. Such signs are generated by the
presence of Li0(−x) := −x/(1 + x) =

∑
n>0(−x)n in (38)

and hence (50). By way of example,

ζ

(
1, 1, 2

−1, +1, −1

)
:=

∑
n1>n2>n3>0

(−1)n1

n1

1
n2

(−1)n3

n2
3

(52)

=
3
16

ζ(4) − 5
8
ζ(3) log 2 +

1
2
ζ(2) log2 2

gives the reduction of a weight-4 depth-3 sum to sums of
lesser depth, and their products.

In [7], we discovered a simple rule for the number of
basis terms for reducing all Euler sums of weight n: it is
given by the Fibonacci number Fn+1 = Fn + Fn−1, with
F1 = F2 = 1. Subsequent work with David Bailey [20] has
confirmed this up to weight n = 11, where there are F12 =
144 basis terms. Using the integer-relation search routine
pslq [16], we reduced all 1024 convergent alternating sums

of weight 11 and depth 11 to a 144-dimensional basis,
finding integer coefficients of up to 30 digits, for which
5000-digit precision was necessary. The chance of mistaken
reduction was always less than 10−200.

In the present case, at weight n = 4, there are only
F5 = 5 basis terms, which may be taken as π4, π2 log2 2,
log4 2, ζ(3) log 2 and a single irreducible alternating double
sum. Previous experience [1,7] with quantum field theory
shows that it is particularly convenient to take this fifth
term as

U3,1 :=
∑

m>n>0

(−1)m+n

m3n
:= ζ

(
3, 1

−1, −1

)
(53)

since both the contribution (14) to the 3-loop electroweak
rho-parameter [4,5] in QCD, and also the weight-4 contri-
bution to the 3-loop electron anomalous magnetic moment
[21] in QED, are rational combinations of U3,1 with ζ(4),
free of the other three basis terms. Thus we had a very
strong expectation that the same simplification would oc-
cur in the present case. Indeed it does; using the methods
of [7,13] we evaluated (50) as

F2N =
19
2

ζ(4) + 8U3,1 (54)

which is, to our knowledge, a new result. Converting this
to a high-precision numerical value is a simple matter,
since [7]

U3,1 =
1
2
ζ (4)+

1
2
ζ (2) log2 2− 1

12
log4 2−2 Li4

(
1
2

)
(55)

has all [6] of its terms in SC∗(2).

4.2 Vacuum diagrams with three massive lines

In the first instance, we shall evaluate vacuum diagrams
with three masses as integrals of a dilog times a logarithm
from the derivative of the spectral density of a two-point
function with only two masses. For the massive triangle
in V3T , this integral yields a multiple of π4. We shall show
how to remove the dilog, to get a product of 3 logs, in the
case of interest in the standard model [4,5], namely V3L,
where the 3 masses form a line. The result is reducible to
π4 and Cl22(π/3). The star case, V3S , is found to be an
intriguing combination of the other two.

4.2.1 Zeta values when the masses form a triangle

We begin with σ′
14, which was evaluated, for the purposes

of QCD, in [8], with the very simple result

s σ′
14(s) = −2µ(1/s) Θ(s − 1) . (56)

This affords a good test of the method, since the spectral
density does not vanish at threshold, s = 1. One readily
shows that
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4ζ(2) =
∫ ∞

1
ds σ′

14(s) (57)

6ζ(3) =
∫ ∞

1
ds σ′

14(s) log(s) (58)

0 =
∫ ∞

1
ds σ′

14(s)
{

s + 2
s − 1

log(s) − 3
}

(59)

F2A = 8ζ(4) =
1
2

∫ ∞

1
ds σ′

14(s) log2(s) (60)

F3T = 12ζ(4) = −
∫ ∞

1
ds σ′

14(s) Li2(1 − s) (61)

with the first sum rule giving the threshold value −σ14(1),
and the second the asymptotic value I14(∞). The third is
the limit of sum rule (42) at N = 2 and s0 = 1, with
a constant term in the weight function that must be re-
tained, on account of (57). The fourth gives F2A, in agree-
ment with (49), and the fifth F3T , in agreement with (11).
Hence we evaluate no new result, but rather submit the
methodology to a thorough work-out.

4.2.2 The square of Cl2(π/3) when the masses form a line

To obtain F3L, entailed by the 3-loop rho-parameter [4,5],
we calculated

σ′
15(s) =

2 log |s − 1|
1 + |s − 1| Θ(s)

−2(s − 4) arccosh(s/2 − 1)
(s − 1)(s − 2)

Θ(s − 4) (62)

which passes the sum-rule tests

0 =
∫ ∞

0
ds σ′

15(s) (63)

6ζ(3) =
∫ ∞

0
ds σ′

15(s) log(s) (64)

F2N =
19
2

ζ(4) + 8U3,1 =
1
2

∫ ∞

0
ds σ′

15(s) log2(s) (65)

with the third giving agreement with (54). There is no
analogue of (59), since the massive lines in V3L lack the
necessary symmetry. The finite part of V3L is obtained by
evaluating

F3L = −
∫ ∞

0
ds σ′

15(s) Li2(1 − s) (66)

which readily gives a 30-digit result for the MS finite part

D3 := 6ζ(3) + 3ζ(4) − F3L (67)

that validates the 22-digit result in [4].
To identify the analytical nature of F3L, we remove the

dilog from (66). The method, in outline, is as follows.

1. The difficulty in (66) resides only in the contribution
to (62) with branchpoint at s = 4; the remaining part
yields only alternating sums.

2. To separate the terms in σ′
15, one should work with

the combination F3L − F2N =
∫∞
0 dx I15(x)/x(x + 1),

where the convergence is sufficient to consider each in-
termediate state separately, without need of preserving
high-energy cancellations.

3. By Cauchy’s theorem, one may write down, by inspec-
tion, a function I ′

15b(x) whose discontinuity reproduces
the contribution to σ′

15 from the intermediate state in
(62) with branchpoint at s = 4.

4. Integration by parts gives this contribution to F3L as∫∞
0 dx I ′

15b(x) log(1 + 1/x).
5. The remaining contributions evaluate as alternating

Euler sums. These contain ζ(4), U3,1 and an unwonted
π2 log2 2 term.

6. Further simplification is achieved by separating from
I ′
15b(x) the terms in π2/(x + 1) and π2/(x + 2) that

remove singularities of its hyperbolic part at x = −1
and x = −2. It is not necessary to include these in the
integral over the euclidean region, x ∈ [0,∞].

7. The π2/(x + 2) term in I ′
15b(x) yields a π2 log2 2 con-

tribution to F3L that precisely cancels those from the
other intermediate states.

The result is

F3L =
79
8

ζ(4) + 5U3,1 +
∫ ∞

0

dx (x + 4)
(x + 1)(x + 2)

×arccosh2
(

x + 2
2

)
log
(

x + 1
x

)
(68)

with a factor (x+4)/(x+1)(x+2) obtained by inspecting
(62) at s = −x.

The simplest hypothesis for (68) is reducibility to
weight-4 terms formed from primitives already encoun-
tered in vacuum diagrams, and their products, namely to
π4, U3,1 and S2

2 = 243−5Cl22(π/3). We discount π2S2, since
measure (2) suppresses ζ(2) at two loops, but not ζ(4) at
three loops. To see whether the 3 candidates suffice, we
define the 5 quadrilogarithms

Q(n) :=
∫ ∞

0

dx

x + n
arccosh2

(
x + 2

2

)
log
(

x + 1
x

)
(69)

for n ∈ {0, 1, 2, 3, 4}, which are all values of −x at which
the hyperbolic function gives a rational multiple of π2.
Evaluating these 5 integrals to high precision and per-
forming a pslq search, one finds that there is an integer
relation between them:

0 = 15Q(0) + 144 Q(1) − 448 Q(2) + 126 Q(3) + 168 Q(4) .
(70)

Moreover pslq confirms that there is no integer relation,
with coefficients of less than 20 digits, between π2S2 and
{Q(n) | n = 0 . . . 3}. Since Cl22(π/3), ζ(4) and U3,1 provide
only 3 basis terms, we must adjoin a fourth that is not
reducible to these. The transformation x = (1 − y)2/y
maps (69) to

Q(n) =
∫ 1

0
dy log2(y) log

(
1 − y + y2

(1 − y)2

)
d

dy

× log
(

y

1 + (n − 2)y + y2

)
(71)
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with n ∈ {0, 1, 2, 3, 4} producing only logs of y and yk −y,
where y6

k = 1. Noting the role of the sixth root of unity,
λ := exp(iπ/3), we chose the fourth basis term as

V3,1 :=
∑

m>n>0

(−1)m cos(2πn/3)
m3n

= < ζ

(
3, 1

λ3, λ2

)
(72)

where now the notation (51) is generalized to include cases
with σ6

j = 1, as opposed to merely σj = 1 for multiple zeta
values, or σ2

j = 1 for Euler sums. In Sect. 6.2.1, we show
how to evaluate V3,1 to 1000 digits in a few seconds. Using
60 digits, pslq found the reductions

Q(0) = 4Cl22(π/3) (73)

Q(1) =
4
3
Cl22(π/3) +

7
6
ζ(4) (74)

Q(2) = −Cl22(π/3) +
53
16

ζ(4) +
5
2
U3,1 (75)

Q(3) = −50
9

Cl22(π/3) +
596
81

ζ(4) − 16
9

U3,1 +
32
3

V3,1 (76)

Q(4) =
125
54

ζ(4) + 8U3,1 − 8V3,1 (77)

which were then checked to 120 digits, making the chance
of misidentification less than 10−60. The formulas for Q(1)
and Q(2) provide an evaluation of the integral in (68) that
is free of V3,1 and cancels the U3,1 term from the easily
obtained Euler sums, leaving

(Cl2(π/3))2 +
(

1
2
ζ(2)

)2

= ζ(3) − 1
6
D3 (78)

as the wonderfully simple sum of squares that determines
the rho-parameter constant D3, previously unknown [4,5]
analytically.

4.2.3 A star-triangle-line integer relation

To evaluate the massive-star finite part

F3S = −
∫ ∞

0
ds σ′

12(s) Li2(1 − s) (79)

we calculated

σ′
12(s) =


σ′

12a(s) for s ∈ [0, 1]

σ′
12b(s) for s ∈ [1, 4]

σ′
12c(s) for s ∈ [4,∞]

(80)

with the branchpoints at s = 0, 1, 4 adding successive
terms. The results are

σ′
12a(s) = −2 arccos(1 − s/2)√

s(4 − s)
(81)

σ′
12b(s) = −arccos(s/2 − 1)√

s(4 − s)
− log(s)

s
(82)

σ′
12c(s) =

2 log(s) − arccosh(s/2 − 1)√
s(s − 4)

− log(s)
s

(83)

which were stringently tested by the 4 sum rules

0 =
∫ ∞

0
ds σ′

12(s) (84)

6ζ(3) =
∫ ∞

0
ds σ′

12(s) log(s) (85)

0 =
∫ ∞

0
ds σ′

12(s)
s + 2
s − 1

log(s) (86)

F2A = 8ζ(4) =
1
2

∫ ∞

0
ds σ′

12(s) log2(s) (87)

where the third is in agreement with (42) and the fourth
with (49).

We gave (79)–(83) to maple, which returned a 30-digit
result for F3S . Passing this to the pslq lattice algorithm,
we searched for an integer relation and were rewarded by
another satisfyingly simple result:

F3S =
1
3
F3T +

2
3
F3L = 4Cl22(π/3) +

17
2

ζ(4) (88)

which provides a direct relation between diagrams:

3V3S = V3T + 2V3L + O(ε) (89)

similar to that provided by (9), (10), (11), namely

3V2A = V1 + 2V3T + O(ε) (90)

which has pentalogarithmic corrections at O(ε). I feel that
the simplicity of this third new result, (89), 3 stars =
triangle + 2 lines, is trying to tell us something impor-
tant about the mapping from diagrams to polylogs that is
provided by quantum field theory in 4 spacetime dimen-
sions. It is remarkable, to put it mildly, that integration
of the physical intermediate-state contributions (81), (82),
(83), with a dilogarithmic weight function, results in no
more than the simple mnemonic (89), despite the different
branchpoints and analytical properties of the discontinu-
ities in the various channels of the three diagrams. Col-
leagues are warmly invited to demystify the integers in
(89).

4.3 Vacuum diagrams with four massive lines

In [1], we obtained the result (14) for the diagram V4N ,
with 4 massive lines and 2 massless lines that are not
adjacent. We briefly revisit this case dispersively, before
turning to the new case V4A, where the massless lines are
adjacent.

4.3.1 Integer relation, with non-adjacent massless lines

In [8] we obtained the result

σ′
3(s) = −4

µ(t) + µ(t2)√
s(s − 4)

Θ(s − 4) (91)
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in terms of the logarithmic function (36) and a mapping
s = (1 + t)2/t. Transforming sum rule (27) to an integral
over t, we obtain

F4N = −2
∫ 1

0
dt

µ(t) + µ(t2)
t

{
log2

(
(1 + t)2

t

)
− log2 4

}
(92)

The integrand can be rewritten in terms of log(t) and
Lik(±t), with k = 0, 1, 2, to obtain a systematic reduction
to alternating Euler sums, giving

F4N = 17ζ(4) + 16U3,1 (93)

in agreement with the QED analysis of [1], where we eval-
uated (14). It was the simplicity of (93), in comparison to
its disguise (14), that suggested the importance of U3,1 in
quantum field theory [7]. This was confirmed by the re-
sult for the weight-4 terms in the 3-loop electron anoma-
lous magnetic moment [21], which are proportional [7] to
39ζ(4) + 400U3,1. The new Euler-sum result of this pa-
per, F2N = 19

2 ζ(4)+8U3,1, strengthens the case that U3,1,
rather than Li4( 1

2 ), is the new number to expect from
Feynman diagrams entailing alternating Euler sums. It
also provides another simple integer relation:

F4N = 2F2N − 2ζ(4) (94)

though we did not need pslq to detect this, having in-
stead a systematic procedure for dealing with Euler sums.
It is notable that doubling the number of massive lines
also doubles the contribution of the irreducible alternat-
ing Euler sum.

4.3.2 Integer relation, with adjacent massless lines

In [8], we obtained the result

σ′
12(s) =

{−(4s − s2)−1/2arccos(1 − s/2) for s ∈ [0, 4]

−(s2 − 4s)−1/2ρ(t) for s ∈ [4,∞]
(95)

with a mapping s = (1 + t)2/t to the logarithmic function

ρ(t) :=
4t

1 + t
log(t) − 2 log(1 + t) (96)

which enables rapid numerical evaluation of

F4A = −
∫ ∞

0
ds σ′

12(s) Li2(1 − s) . (97)

An integer-relation search by pslq then returned

F4A = F3L +
8
3
ζ(4) = 6Cl22(π/3) +

113
12

ζ(4) (98)

which may be rewritten as a fairly simple relation between
diagrams:

3(V4A − V3L) = 2(V3T − V2A) + O(ε) (99)

akin to (89), (90). Thus there is still no role for the sus-
pected primitive V3,1 in (72), since both cases with 4 masses
enjoy remarkable integer relations to diagrams with fewer
masses.

4.4 Vacuum diagram with five massive lines

Applying (28) to (91) we obtain

F5 = 4
∫ 1

0
dt

µ(t) + µ(t2)
t

×
{

Li2

(
1 − (1 + t)2

t

)
− Li2(−3)

}
(100)

which is not reducible to the previous 8 cases. As expected,
pslq easily found the result, at 30-digit precision, when
given the additional constant V3,1 to work with, returning

F5 = −8
3
Cl22(π/3) +

550
27

ζ(4) + 16V3,1 (101)

from which U3,1 is absent. This reproduces (100) at 80-
digit precision, making the chance of mistaken identifica-
tion less than 10−50.

With this fifth new result, all envisaged constants are
now in play. The key question is: do they suffice when the
final line is given a mass?

4.5 The totally massive case

We were able to handle the foregoing 9 cases by methods
that avoided intermediate states with 3 massive particles.
Now there is no option, since

F6 = −
∫ ∞

4
ds σ′(s) Li2(1 − s) (102)

involves intermediate states with two and three massive
particles in

σ′(s) = σ′
a(s) Θ(s − 4) + σ′

b(s) Θ(s − 9) . (103)

We may, however, simplify matters by separating these
contributions in

F6 − F5 =
∫ ∞

4
ds σ′(s) Li2(1 − 1/s) = Fa + Fb (104)

Fa :=
∫ ∞

4
ds σ′

a(s) {Li2(1 − 1/s) − ζ(2)} (105)

Fb :=
∫ ∞

9
ds σ′

b(s) {Li2(1 − 1/s) − ζ(2)} (106)

where the cancellation of the cuts at high energy is not
necessary to ensure convergence, and F5 is given by (101).

The two-particle cut gives a logarithm in

σ′
a(s) =

2
s − 3

{
arccosh(s/2 − 1) − 2π√

3s(s − 4)

}
(107)

while the three-particle cut gives the elliptic2 integral

σ′
b(s) = −2

∫ (
√

s−1)2

4

dx

x − 1
∆(x, 1, 1)
∆(x, s, 1)

× x + s − 1
∆2(x, s, 1) + xs

. (108)

2 I am told that Källén was disappointed to find that the
two-loop electron propagator [18] involves an elliptic integral,
unlike the simpler photon propagator [17]
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At large s, contributions (107), (108) are each O(log(s)/s),
while their sum is O(log(s)/s2). The integrals (105), (106)
converge separately, thanks to the ζ(2) in their weight
functions, to which the combination (104) is blind.

High-precision numerical evaluation of (105) presents
no problem, since it is of the same character as previ-
ous cases, involving merely integration of the product of a
dilog and a log. On the other hand, it appears from (106),
(108) that we are also obliged to integrate the product of a
dilog and an elliptic integral. In fact, this is not necessary,
since we may use the method of [8] to circumvent such a
contingency, by reversing the order of integration. Setting
x = 1/u2 ∈ [4,∞] in (108), which now becomes the outer
integration, and s = (1/u+v)(1/u+1/v) ∈ [(1/u+1)2,∞]
in the inner, we then integrate by parts on v ∈ [0, 1] to
convert the dilog to a product of logs, with the result

Fb = 2
∫ 1

2

0
du

(
dA(u)

du

)∫ 1

0
dv

(
∂B(u, v)

∂v

)
×C(u, v) D(u, v) (109)

A(u) := log
(

u2

1 − u2

)
(110)

B(u, v) := log
(

(1 + uv)(u + v)
u + v + uv2

)
(111)

C(u, v) := log
(

(1 + uv)(u + v)
u2v

)
(112)

D(u, v) := log

(
1 + 2uv + v2 + (1 − v2)

√
1 − 4u2

1 + 2uv + v2 − (1 − v2)
√

1 − 4u2

)
(113)

which establishes that Fb is the integral of a trilogarithm.
As (111)–(113) are logs of rational functions of v, the inner
integral gives terms of the form

∫ 1
0

dv
b+v log(c+v) log(d+v),

with parameters {b, c, d} that depend on u. It is shown in
Sect. 8.4.3 of [22] that all such integrals evaluate to Li3
and products of logs and dilogs. Hence, in this apparently
most difficult case, we still arrive at the integral of a trilog-
arithm, as in previous cases, though until now the trilog
factored into products of logs and dilogs.

At this juncture of the investigation, we face a genuine
quandary. If the totally massive case is as complicated as
the Cutkosky rules suggest, then the route is clear: one
should take the trouble to transform (108) to the real
parts of complex complete elliptic integrals of the third
kind and evaluate the integrand of (106) by the process
of arithmetic-geometric mean, as was done in [8], with a
simpler mass case and a simpler weight function. If, on
the other hand, one follows the intuition that V6 lives in
the same universe of quadrilogs of the sixth root of unity
as the 9 previous cases, one has a lower cost (and higher
risk) route to pursue: to evaluate the double integral (109)
to modest precision, without further analytical effort, and
then hope to discover a simple integer relation to previ-
ous cases. Emboldened by discussion with Dirk Kreimer,
I took the latter route.

In this optimistic strategy, the transformation achieved
in (109) is especially fortunate, since the nag routine
d01fcf is notably efficient at evaluating rectangular dou-

ble integrals in double-precision fortran, i.e. to almost
15-digit precision. Adding the easily computed integral
(105) and the already known finite part (101), we thus
quickly arrived at a numerical value of F6 that is rock solid
to 14 digits. Such precision is rather modest, in compar-
ison with previous cases, yet amply sufficient to discover
that

F6 = F3S + F4N − F2N

= 4
(
Cl22(π/3) + 4ζ(4) + 2U3,1

)
(114)

from which V3,1 is absent. This corresponds to a direct
relation between diagrams

V6 + V2N = V3S + V4N + O(ε) (115)

verified to 15 digits. It stands as testament to the oft re-
marked fact that results in quantum field theory have
a simplicity that tends to increase with the labour ex-
pended.

4.6 Tabulation of results

For ease of reference, we collect the 10 results in Table 2,
which gives the MS finite part

V j := lim
ε→0

(
Vj − 2ζ(3)

ε

)
= 6ζ(3) + 3ζ(4) − Fj (116)

= 6ζ(3) + zj ζ(4) + uj U3,1 + sj Cl22(π/3) + vj V3,1

by specifying non-zero coefficients of the 4 basic quadrilog-
arithms. In each case a numerical value is appended;
Sect. 6.3.3 extends it to 10 000 digits in seconds. The first
and last values spell out the efficacy of the MS scheme:
the largest absolute value is only 0.2% greater than the
absolute minimum, 1

2 (V1 − V6), attainable in any MS-like
scheme.

5 Shuffle algebras with the sixth root of unity

It may come as a surprise that we reduced the 9 non-zero
values of Fj to merely the 4 terms {ζ(4), U3,1, Cl22(π/3),
V3,1}, with 5 integer relations, given by (89), (90), (94),
(99), (115). The simplicity of the results for the Feynman
diagrams reflects the tight constraints that are placed on

ζ

(
s1 . . . sk

λp1 . . . λpk

)
:=

∑
nj>nj+1>0

k∏
j=1

λpjnj

n
sj

j

(117)

by a pair of shuffle algebras entailing λ := exp(iπ/3) =
(1 + i

√
3)/2. In the restricted case pj ∈ {0, 3}, giving

λpj = ±1, both shuffles algebras for the corresponding
Euler-Zagier (EZ) sums have been intensively studied [7,
13,14,19,23–29]. The extension from the EZ case to the
somewhat harder case with pj ∈ {0, 1, 2, 3, 4, 5} was rather
clear, in principle [14], though little seemed to be known
about the enumeration of primitives. In Sects. 5.1–5.3, we
consider all of the sixth roots of unity. Then we remark
on the context [30] in which the primitive root, λ, plays a
special role.
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Table 2. MS finite parts

Vj zj uj sj vj V j

V1 3 10.4593111200909802869464400586922036529141

V2A −5 1.8007252504018747548184104863628604307161

V2N − 13
2 −8 1.1202483970392420822725165482242095262757

V3T −9 −2.5285676844426780112456042998018111803828

V3S − 11
2 −4 −2.8608622241393273502727845677732419175614

V3L − 15
4 −6 −3.0270094939876520197863747017589572861507

V4A − 77
12 −6 −5.9132047838840205304957178925354050268834

V4N −14 −16 −6.0541678585902197393693995691614487948131

V5 − 469
27

8
3 −16 −8.2168598175087380629133983386010858249695

V6 −13 −8 −4 −10.0352784797687891719147006851589002386503

5.1 Depth-length shuffles

Considered as a nested sum of depth k, (117) has an ob-
vious property: the product of two nested sums, of depths
k1 and k1, is a linear combination of nestings at depth
k1 + k2, with some additional terms to take account of
equality of summation variables. Thus the simplest case,
with depths k1 = k2 = 1, is

ζ

(
s1
λp1

)
ζ

(
s2
λp2

)
= ζ

(
s1, s2

λp1 , λp2

)
+ ζ

(
s2, s1

λp2 , λp1

)
+ζ

(
s1 + s2
λp1+p2

)
(118)

with the terms on the right corresponding to the summa-
tion regions with n1 > n2, n1 < n2, and n1 = n2. The
final term has the same weight, but lesser depth. The gen-
eralization to the product of sums of arbitrary depth is
clear: there is a shuffle of the depth-length strings of ar-
gument pairs (sj , pj) and extra terms, of lesser depth, in
which subsets of arguments sj are added, with the corre-
sponding powers pj of λ added mod 6.

5.2 Weight-length shuffles

The second type of ring structure results from expressing
(117) as an iterated integral [31]. In the present case, this
may be regarded as a word formed by concatenation of
letters from the 7-letter alphabet Aλ := {Ω, ω0, ω1, ω2,
ω3, ω4, ω5} consisting of the 1-forms Ω := dz/z and ωp :=
dz/(λ−p − z), with ωp+6 = ωp. The concrete example in
(72) serves to illustrate the equivalence of nested sums and
iterated integrals:

ζ

(
3, 1

λ3, λ2

)
=
∫ 1

0

dz1

z1

∫ z1

0

dz2

z2

∫ z2

0

dz3

λ−3 − z3

∫ z3

0

dz4

λ−5 − z4

:= ζ(Ω2ω3ω5) (119)

with the third form standing as a mnemonic for the sec-
ond. To prove (119) one expands

ωp :=
dz

λ−p − z
= Ω

∑
r>0

λprzr (120)

which makes the zj integrations trivial and gives

ζ(Ω2ω3ω5) =
∑

r,s>0

λ3r+5s

(r + s)3s

=
∑

n1>n2>0

λ3n1

n3
1

λ2n2

n2
= ζ

(
3, 1

λ3, λ2

)
(121)

with n1 = r + s and n2 = s. Thus (119) may be regarded
as ζ(W ) with W = Ω2ω3ω5 specifying the correspond-
ing iterated-integral word. It is purely a matter of book-
keeping to transform a word to a nested sum, and vice
versa. The general dictionary is

ζ(Ωs1−1ωp1Ω
s2−1ωp2 . . . Ωsk−1ωpk

)

:= ζ

(
s1, s2 . . . sk

λp1 , λp2−p1 . . . λpk−pk−1

)
(122)

showing that the length of the word is the weight, n :=∑
j sj , of the sum, and the number of Ω’s in the word is

n − k, where k is the depth of the sum.
The second shuffle algebra is merely the observation

that
ζ(W1) ζ(W2) =

∑
Wj∈S1,2

ζ(Wj) (123)

where the sum is over all words Wj in the set S1,2 obtained
by shuffling W1 and W2, while preserving the order of each.
This is a property of all iterated integrals [31].

As an example at weight 4, consider

ζ(Ωω1) ζ(Ωω5) = ζ(Ωω1Ωω5) + 2 ζ(Ω2ω1ω5)
+(ω1 ↔ ω5) (124)
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which translates to a rather non-trivial double-sum iden-
tity

π4

64 + Cl22(π/3) =
∑

m>n>0

(
2

m2n2 +
4

m3n

)
(−1)n

× cos
(

1
3
πm +

1
3
πn

)
(125)

using
∑

n>0 cos(πn/3)/n2 = (π/6)2 from [22], on the left,
and translating words to double sums, on the right.

It is clear that such weight-length shuffles cannot yield
the whole story, because the depth-length shuffle (118)
has a final term in which the number of Ω’s increases,
which can never occur in (123). Thus one should solve
for both ring structures. There is a systematic method for
solving either in isolation, using Lyndon words [26]. These
form a subset of words, defined by a lexicographic ordering
criterion, with elements and products that furnish a basis
to which all words can be reduced by a shuffle algebra.
Choosing a set of Lyndon words is equivalent to choosing
a minimal set of brackets that solves the Jacobi identity in
a free Lie algebra. In our case, the corresponding free Lie
algebra has 7 generators, so such a systematic technique
is particularly welcome. However, solving a second shuffle
algebra for the Lyndon words of the first appears to be a
matter of brute force. And even then we are not done.

5.3 Transformations of words

There are yet further constraints, beyond those obtain-
able by either type of shuffle. Consider, for example, a
word formed from the 3-letter EZ sub-alphabet A3 :=
{Ω, ω0, ω3}. Let us denote by ζ(Ω; ω0; ω3) an arbitrary
sum corresponding to some word W all of whose letters3
are in A3. Its formal arguments are the three possible let-
ters, which we separate by semi-colons, for emphasis. Now
we transform the path from z = 0 to z = 1, in the iterated
integral, by the mapping

z → 1 − z

1 + z
(126)

which interchanges the endpoints, z = 0 and z = 1.
This induces a linear transformation of the 1-forms Ω :=
d log(z), ω0 := −d log(1− z) and ω3 := −d log(1+ z) from
which the integral is constructed. Hence we immediately
arrive at a highly non-trivial result:

ζ(Ω; ω0; ω3) = ζ̃(ω0 − ω3; Ω + ω3; ω3) (127)

in which the formal arguments are transformed, and the
tilde is the instruction to write the resultant word back-
wards, on account of the interchange of endpoints. By way
of example, we apply (127) to

U3,1 := ζ(Ω2ω3ω0) = ζ̃
(
(ω0 − ω3)2 ω3 (Ω + ω3)

)
3 With mild abuse of notation, we later abbreviate this cum-

bersome locution by writing ζ(W ) ∈ A3

= ζ
(
(Ω + ω3) ω3 (ω0 − ω3)2

)
(128)

= ζ(Ωω3ω
2
0) − ζ(Ωω3ω0ω3) − ζ(Ωω2

3ω0) + ζ(Ωω3
3)

+ ζ(ω2
3ω2

0) − ζ(ω2
3ω0ω3) − ζ(ω3

3ω0) + ζ(ω4
3)

(129)

which turns a double sum into a combination of sums of
depths 3 and 4.

There are further constraints. From the complex con-
jugation λ → λ−1 we obtain

ζ(Ω; ω0; ω1; ω2; ω3; ω4; ω5)
= ζ(Ω; ω0; ω5; ω4; ω3; ω2; ω1) (130)

where the bar denotes the complex conjugate of the sum.
We can also transform z → 1− z. Acting on multiple zeta
values (MZVs), this gives the duality relation [31]

ζ(Ω; ω0) = ζ̃(ω0; Ω) (131)

with ζ(4) = ζ(2, 1, 1) in (47) as a simple example. In A1 :=
{Ω, ω0, ω1}, it generalizes to

ζ(Ω; ω0; ω1) = ζ̃(ω0; Ω; −ω1) (132)

since λ − 1 = −λ−1. We find that (132) is responsible for
extra reductions within the complex-valued sub-alphabet
A1, just as extension of the Zagier duality (131) to trans-
formation (127) in the Euler-Zagier sub-alphabet A3 re-
duces many real-valued EZ sums.

Next, z → z2 acts on MZVs to give EZ sums:

ζ(Ω; ω0) = ζ(Ω + Ω; ω0 + ω3) (133)

which generalizes to the duplication formula

ζ(Ω; ω0; ω2; ω4)
= ζ(Ω + Ω; ω0 + ω3; ω1 + ω4; ω2 + ω5) (134)

acting on Aλ2 := {Ω, ω0, ω2, ω4}, i.e. on cube roots of
unity. Similarly, z → z3 acts on square roots of unity in
A3, to give the triplication formula

ζ(Ω; ω0; ω3) = ζ(Ω +Ω +Ω; ω0 +ω2 +ω4; ω1 +ω3 +ω5) .
(135)

All known relationships between EZ sums follow from
combining (127) with the two shuffle algebras and the sim-
ple relations (131), (133). Moreover there is information in
(127) that cannot be extracted from the other four sources.
A case in point is the reduction [7]

U4,2 :=
∑

m>n>0

(−1)m+n

m4n2 =
97
96

ζ(6) − 3
4
ζ2(3) (136)

which is impossible to deduce from the machinery of [23],
but follows by augmenting it with (127). It is believed that
the Fibonacci enumeration of EZ sums in [7], with Fn+1
basis terms at weight n, follows from what is given above.
This is proven, by brute force, for weights n ≤ 8. At n = 8,
the nexus of 5 constraints reduces 38 = 6561 words to a
basis of size merely F9 = 34. Moreover, pslq reduced all
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1024 finite words of length 11 in the sub-alphabet {ω0, ω3}
to a basis of the expected size F12 = 144.

In all of this, one needs a regularization of those iter-
ated integrals (less than 27% of the total) whose words
begin with ω0, or end with Ω, since these give divergences
at z = 1, or z = 0. They are handled rather neatly by
reduction to a Lyndon basis of the weight-length shuf-
fles, with product terms separating off divergences and
subdivergences in a manner analogous to the subtraction
procedures of quantum field theory. The primitives that
occur for the first time at weight n are then in the finite
parts of divergent words of length n, again in the manner
of quantum field theory [28,32].

5.4 A perspective on roots of unity

While practical calculation entails all of the tools above,
there is both physical [15] and mathematical [30] interest
in restricting attention to primitive terms, i.e. those terms
in the basis at a given weight that do not factorize into
terms of lesser weight. From this point of view, one may
ignore the left-hand side of (123) and solve the weight-
length shuffle, with great economy, in terms of Lyndon
words.

In the EZ case, one may conveniently frame [30] such a
study, via the Campbell-Baker-Hausdorff route, in terms
of a (suitably regularized) path-ordered exponential

γ(e0, e1, e−1) = P exp
∫ 1

0

h

2πi

(
e0

dz

z
+ e1

dz

z − 1

× + e−1
dz

z + 1

)
(137)

where {e0, e1, e−1} are non-commuting objects that gen-
erate a free Lie algebra. Then the Lyndon words corre-
spond to a minimal choice of Lie brackets, consistent with
the Jacobi identity. To specify, say, the U3,1 content of all
weight-4 EZ sums, it is sufficient to give the rational com-
bination of brackets that multiplies h̄4U3,1 in the expan-
sion of (137), since products of brackets are irrelevant to
primitives. The question then arises: can one arrive at the
primitive content without using the depth-length shuffles
that are hidden by the integral representation?

Clearly, if one is going to neglect, pro tempore, the
powerful information of Sect. 5.1, and has already fully
exploited, via Lie brackets, the information of Sect. 5.2,
the transformations of Sect. 5.3 are crucial. Let us denote
by Xj(e0, e1, e−1, e∞) the combination of brackets that
multiplies a primitive term, such as (ih̄)3ζ(3), in the ex-
pansion of (137). Here e∞ := −e0−e1−e−1 is an auxiliary
argument that serves to expose the underlying structure.
Then (127) tells us that

0 = Xj(e0, e1, e−1, e∞) + Xj(e1, e0, e∞, e−1) (138)

which involves two elements of the symmetry group, D4 ∼
Z2 o Z2, of a square.

So far we have gained no new information, since (138)
is merely the consequence of transforming the path in

(137) by z → (1 − z)/(1 + z). The remarkable finding [30]
of Pierre Deligne is that there is a second key property of
Xj :

0 = Xj(e0, e1, e−1, e∞) + Xj(e1, e∞, e0, e−1)
+Xj(e∞, e−1, e1, e0) + Xj(e−1, e0, e∞, e1) (139)

in which one sums over four elements of D4.
We have verified (139) in the case of the brackets mul-

tiplying ζ(3), using the complete results from previous
sections. Unlike (138), the new constraint (139) is not a
general property of EZ sums, but only of those parts of
them that do not involve reductions to products of terms
of lesser weight. In thus helps to predict the coefficients
of new terms, at a given weight, while those of the prod-
ucts of old terms are ignored, in the first4 instance. In this
sense, it sits very close to the preoccupations of [27,28,32–
36], where Bob Delbourgo, John Gracey, Andrei Kataev,
Tolya Kotikov, Dirk Kreimer and I were concerned with
the constants that first enter quantum field theory at a
given order in perturbation theory.

Now the crux of these observations is that when Pierre
Deligne communicated (139), he included the following
thought-promoting remark [30]:

If λ = 1
2

(
1 +

√−3
)

(sixth root of 1), one could
hope for having a similar story for the free Lie al-
gebra generated by e0, e1 and eλ, and for

γ = P exp
∫ 1

0

1
2πi

(
e0

dz

z
+ e1

dz

z − 1
+ eλ

dz

z − λ

)
.

(140)

Putting this remark together with the commonplace
finding of Cl2(π/3) := = Li2(λ) at two loops [8], we un-
dertook the task of identifying the relation of D3 := V 3L,
in the 3-loop rho-parameter, to polylogs of λ, expecting
to find a new weight-4 primitive, to account for previous
difficulty [4,5] in identifying this term. As seen in Table 2,
the situation was far simpler: none occurs; we encounter
only products of sums of lesser weight. Moving up to 4
masses, we expected to detect at least V3,1. As seen in
Table 2, the situation was equally simple, with reductions
to cases with fewer masses. With 5 masses, V3,1 at last
appeared; yet with 6 it was again absent. Such simplic-
ity in quantum field theory seems to be telling us that
the primitives are very few in number, at weights n ≤ 4,
and that the topology of the diagram determines which of
those few appear in the quantum amplitude.

Accordingly, we shall conclude the paper with a study
of all words with less than 4 letters, and of all 4-letter
words with depth k ≤ 2, as entailed by the Feynman di-
agrams. We shall pay particular attention to the Deligne
sub-alphabet, A1 := {Ω, ω0, ω1}, with the generalized du-
ality relation (132). The physical motivation is that Ta-
ble 2 implicates A1 in the especial simplicity of 3-mass di-
agrams, while the more familiar EZ sub-alphabet, A3 :=

4 Pierre Deligne has devised [30] an iterative Lie-algebraic
procedure for progressing beyond this stage
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Table 3. Real and imaginary parts of 2-letter double sums in the 7-letter alphabet

p r < ζ(ωpωr) = ζ(ωpωr)

1 0 − 1
36π2 Cl2(π/3)

2 0 − 5
72π2 + 1

8 log2 3 2
3Cl2(π/3) − 1

12π log 3

3 0 − 1
12π2 + 1

2 log2 2 0

2 1 − 1
36π2 1

3Cl2(π/3) − 1
6π log 3

3 1 − 1
72π2 − 1

4Li2( 1
4 ) − 1

2 log2 2 + 1
2 log 2 log 3 − 1

6Cl2(π/3) − 1
3π log 2 + 1

6π log 3

4 1 − 1
72π2 + 1

4Li2( 1
4 ) + 1

2 log2 2 − 5
6Cl2(π/3) + 1

2π log 2 − 1
6π log 3

5 1 1
18π2 − 4

3Cl2(π/3) + 1
3π log 3

3 2 − 1
72π2 + 1

4Li2( 1
4 ) + 1

2 log2 2 1
6Cl2(π/3) − 1

6π log 2

4 2 1
72π2 + 1

8 log2 3 − 1
3Cl2(π/3) + 1

12π log 3

{Ω, ω0, ω3}, enters with 2 masses. We show that these sub-
alphabets choose different bases of super-fast computabil-
ity: b = 2 for Euler-Zagier primitives; b = 3 for Deligne
primitives.

6 Polylogarithms of the sixth root of unity

The convergent one-letter words of the 7-letter alphabet
are

ζ(ωp) = − log(1 − λp) =


i 1

3π for p = 1
− 1

2 log 3 + i 1
6π for p = 2

− log 2 for p = 3
(141)

with p → 6 − p for complex conjugates. Thus 3 primitives
are presumed at weight5 n < 2.

6.1 Reduction of all two-letter words

At the level of dilogs, one obtains the following single sums
from [22]

ζ(Ωωp) = Li2(λp) =


1
6π2 for p = 0
1
36π2 + iCl2(π/3) for p = 1

− 1
18π2 + 2i

3 Cl2(π/3) for p = 2
− 1

12π2 for p = 3
(142)

where Cl2(π/3) :=
∑

n>0 sin(πn/3)/n2 is presumably
primitive. For the double sums, ζ(ωpωr), we need consider
only the 9 cases of Table 3.

The remaining cases are then determined by the shuffle

log(1 − λp) log(1 − λr) = ζ(ωpωr) + ζ(ωrωp) (143)

5 Physicists tend to set h̄ := h/2π = 1 in (137); mathemati-
cians tend to put h = 1, to rationalize powers of π. Thus the
weight of π is a matter of convention. All parties agree that it
is less than 2

and by the complex conjugation (130). Making extensive
use of identities in [22], we found that there is a second
weight-2 primitive, which may be taken as Li2( 1

4 ).
Fast computation of the primitive Li2( 1

4 ), in the real
parts, is straightforward. Almost as fast, is the evaluation
of

Cl2(π/3) = −
√

3
2

∫ 1

0

dy log(y)
1 − y(1 − y)

=
√

3
∑
n>0

1
n
(2n

n

) 2n−1∑
k=n

1
k

(144)

in the imaginary parts. Expanding the integrand in pow-
ers of y(1 − y), we obtain a summand that is a derivative
of an Euler Beta function. Computation of the resulting
inner harmonic sum, in the final double sum, is performed
in the same loop that handles the outer sum, which is ex-
ponentially convergent, having the same factor of 1/4n as
Li2( 1

4 ). From a computational perspective, the two prim-
itives are of the same highly convergent character. It thus
takes only a few seconds to compute all 36 convergent two-
letter words to 1000-digit precision, and hence to obtain
to this precision the reducible quadrilogarithm (78) in the
rho-parameter. In Sect. 6.2.5 we shall go a step further,
by reducing

√
3 Cl2(π/3) to an exponentially convergent

single sum.
It is notable that ζ(ω3ω1) of Table 3 entails 7 of the 8

real basis constants at weight n = 2. We conclude that
care should be taken when restricting attention to the
4-letter union A13 := A1 ∪ A3 = {Ω, ω0, ω1, ω3} of the
Deligne and EZ sub-alphabets. Though such a restriction
might appear tempting from the perspective of the weight-
length shuffle (123), it has little to commend it from the
perspective of dictionary (122), which shows that it denies
access to the full content of depth-length shuffles.

A comparable situation occurred in [7], where we
showed that there are features of MZVs, in A := {Ω, ω0},
that are better [27,28] understood by extending the anal-
ysis to EZ sums, in A3 := {Ω, ω0, ω3}. Notable among
these was the discovery [7] at weight 12 that the depth-4
multiple zeta value ζ(4, 4, 2, 2) := ζ

(
(Ω3ω0)2(Ωω0)2

) ∈ A
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is not reducible to terms of lesser depth in A, yet is re-
ducible to the double sum U9,3 := ζ(Ω8ω3Ω

2ω0) ∈ A3.
Such phenomena, which we refer to as “pushdown”, make
Don Zagier’s challenge of enumeration of primitives of
A, bigraded by weight and depth, a much tougher task
than the enumeration of primitives of A3, conjectured in
[7]. Hence the conjectured answer for reducing MZVs to
MZVs, given with Dirk Kreimer in [28], is of a much sub-
tler form than those for reducing EZ sums to EZ sums, or
MZVs to EZ sums.

Heeding such experience, we are prepared for reduc-
tions of sums in A13 to products of primitives of the full
alphabet, Aλ. Inspection of the results above reveals that
this has already occurred, since they imply the amusing
evaluation∑

m>n>0

1 − 6(−1)n

m n
sin
(

1
3
πm − 1

3
πn

)
:= = {ζ(ω1ω0) − 6ζ(ω1ω3)} = π log 3 . (145)

Remaining strictly within A13, we would be in the ironi-
cal situation of accounting π log 3 as primitive, whereas we
know from (141) that inAλ it reduces to −6= {ζ(ω1) ζ(ω2)},
reminding us that λ2, the primitive cube root of unity, is
also a sixth root.

Notwithstanding the note of caution sounded above,
there is still a lively hope that the Deligne-Euler-Zagier
(DEZ) sub-alphabet A13 is of the essence in quantum field
theory, since the results for all 10 vacuum diagrams of
Table 2 lie within it, entailing only

ζ(4) = ζ(Ω3ω0) ∈ A (146)
U3,1 = ζ(Ω2ω3ω0) ∈ A3 (147)

Cl22(π/3) =
(

ζ(Ωω1) + ζ(ω1ω0)
2i

)2

∈ A1 (148)

V3,1 = < ζ(Ω2ω3ω1) ∈ A13 . (149)

6.2 Reduction of all three-letter words

We already know, to 1000-digit precision, the subset of 16
product terms

Sprod := (R2 ∪ I2) ∪ (R3 ∪ I3) (150)

R2 := {π Cl2(π/3), π2 log 2, π2 log 3} (151)
I2 := {Cl2(π/3) log 2, Cl2(π/3) log 3, π3} (152)

R3 :=
{

Li2

(
1
4

)
log 2, Li2

(
1
4

)
log 3, log3 2,

log2 2 log 3, log 2 log2 3, log3 3
}

(153)

I3 :=
{
πLi2

(
1
4

)
, π log2 2, π log2 3, π log 2 log 3

}
(154)

in the basis for reducing real and imaginary parts of the
252 convergent three-letter words of Aλ. In accord with
remarks in the previous section, we also expect these prod-
ucts in reductions of the DEZ sub-alphabet, A13. However,

we know [7] that only the products π2 log 2 and log3 2 oc-
cur in the words of A3, all of which are real, and we expect
only π Cl2(π/3) and π3 as products in real and imaginary
parts, respectively, of words in A1.

Note that in (150) we have partitioned the product
terms into those that are known to occur in real (R) and
imaginary (I) parts, and further partitioned them into
R2∪I2, known to occur in reductions of three-letter double
and triple sums, and R3 ∪ I3, which can not be produced
by the shuffle algebras in the case of double sums, but
certainly occur in reductions of triple sums.

To these products, we must adjoin the primitive ζ(3),
in the real parts of [22]

ζ(Ω2ωp) = Li3(λp) =


ζ(3) for p = 0

1
3ζ(3) + i 5

162π3 for p = 1
− 4

9ζ(3) + i 2
81π3 for p = 2

− 3
4ζ(3) for p = 3

(155)
and their complex conjugates, with p → 6 − p. Turning to
double sums, we define

Ua,b := ζ(Ωa−1ω3Ω
b−1ω0)

=
∑

m>n>0

(−1)m+n

manb
(156)

Va,b := < ζ(Ωa−1ω3Ω
b−1ω1)

=
∑

m>n>0

(−1)m cos(2πn/3)
manb

(157)

where Ua,b is proven [7] to be reducible at weight a+b = 3.
We shall show that the same applies to Va,b at this weight.
However, close inspection of Eq (8.111) of [22] reveals that

Li3(i/
√

3) =
1
8

∑
n>0

(−1/3)n

n3 +
i√
3

∑
n≥0

(−1/3)n

(2n + 1)3
(158)

will be generated by some of the three-letter words, as will

Li3(λ/2) =
1
8

∑
n≥0

{
2(−1/8)n

(3n + 1)3
− (−1/8)n

(3n + 2)3
− (−1/8)n

(3n + 3)3

}

+
i
√

3
8

∑
n≥0

{
2(−1/8)n

(3n + 1)3
+

(−1/8)n

(3n + 2)3

}
. (159)

These exponentially convergent polylogs are readily com-
puted to high precision, yet pslq found no relation be-
tween their real and imaginary parts and the product
terms already assembled. Hence we adopt

Swork := Sprod ∪
{

ζ(3), Li3(i/
√

3), Li3(λ/2)
}

(160)

as a working set of constants at weight n = 3.

6.2.1 High-precision reduction of trilogarithms

We can achieve rapid computation of

V2,1 = −1
2

∫ 1

0

dy log(y)
1 + y

log(1 − y + y2)
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= −
∑
n>0

Cn

4n
(161)

by expanding log(1 − y + y2) in powers of y(1 − y), to
obtain

Cn = −2Cn−1 +
1

n
(2n

n

) { 1
n

+
2n−1∑
k=n

6
k

}
(162)

with C0 = ζ(2). Hence we arrive at a fast numerical algo-
rithm that updates the harmonic sum, the central bino-
mial coefficient, the value of Cn, and the truncated value
of V2,1, in a single loop, with the same exponential conver-
gence as for (144). There is one point of note: at interme-
diate stages one needs to handle 50% more digits than the
target precision, since recurrence relation (162) magnifies
any error in the starting value, C0 = 1

6π2. Generalizing
this method, we also obtained a 1000-digit value for V3,1
in a few seconds.

At 100-digit precision, pslq easily achieved the reduc-
tion

V2,1 := < ζ(Ωω3ω1)

= −41
36

ζ(3) +
1
18

π2 log 3 +
2
9

π Cl2(π/3) (163)

which we then checked at 1000-digit precision. Indeed, all
searches for reductions of the real parts of three-letter
double-sum words produced only ζ(3) and products in
(151), giving no cause to enlarge the working set (160).

Moving on to the imaginary parts of double sums, we
evaluated to 100 digits the 4 integrals with σ2 = τ2 = 1
in

Wσ,τ := −
∫ 1

0

dy log(y)
1 + σy

arctan

( √
3y

2 − τy

)
(164)

and obtained the pslq reductions

= ζ(Ωω0ω1) = W−1,1 =
7

324
π3 (165)

−= ζ(Ωω3ω1) = W1,1 = − 43
3240

π3 (166)

+
6
5

{
= Li3(i/

√
3) − 1

48
π log2 3

}
= ζ(Ωω0ω2) = W−1,−1 =

8
243

π3

−1
3

Cl2(π/3) log 3 − 4
3
W1,1 (167)

−= ζ(Ωω3ω2) = W1,−1 =
1
36

π3

−1
2

Cl2(π/3) log 3 − W1,1 (168)

showing a simple product in (165) and an anticipated
primitive in (167), with the combination = Li3(i/

√
3) −

1
48π log2 3 common to (167)–(168). Hence it is better to use

(167), in lieu of the imaginary part of (158), for integer-
relation searches. We cite

= ζ(Ωω1ω3) =
5

108
π3 − 5

3
Cl2(π/3) log 2 + W1,1

−2
{

= Li3(λ/2) − 1
12

π log2 2
}

(169)

= ζ(Ωω1ω2) =
7

162
π3 − Cl2(π/3) log 3 − 2W1,1 (170)

as two more findings of pslq that are significant for later
work. The first shows the combination = Li3(λ/2) − 1

12π

log2 2 that enters the imaginary parts of some double
sums. The second is notably free of this combination.

6.2.2 One primitive trilogarithm in A1

In the light of (165), it becomes rather interesting to see if
the Deligne sub-alphabet, A1, has ζ(3) as its sole primitive
trilogarithm. According to pslq, there are no more. We
shall prove this, by establishing the reductions6

ζ(Ωω0ω1) = ζ(3) − 1
3

π Cl2(π/3) + i
7

324
π3 (171)

ζ(Ωω1ω1) =
2
3

ζ(3) − 1
3

π Cl(π/3) + i
1

324
π3 (172)

ζ(Ωω1ω0) = i
1
81

π3 (173)

which show that these 3 sums and the remaining 7

ζ(Ωω0ω0) = ζ(Ω2ω0) (174)
ζ(ω1Ωω1) = ζ(ω1)ζ(Ωω1) − 2ζ(Ωω2

1) (175)
ζ(ω1Ωω0) = ζ(ω1)ζ(Ωω0) − ζ(Ωω1ω0) − ζ(Ωω0ω1)(176)

ζ(ω1ω1ω1) =
1
6
ζ3(ω1) (177)

ζ(ω1ω1ω0) = ζ(Ωω2
1) (178)

ζ(ω1ω0ω1) = ζ(ω1Ωω1) (179)

ζ(ω1ω0ω0) = −ζ(Ω2ω1) (180)

have, at most, ζ(3) as a primitive term.
We have reduced the problem to proving (171)–(173),

by using generalized duality and weight-length shuffles to
determine the remainder. The three extra relations are

ζ(ω1)ζ(Ωω0) = ζ(ω1Ωω1) + ζ(Ωω0ω1)
+ζ(Ω2ω1) (181)

ζ(Ωω0ω1) + ζ(Ωω1ω0) = ζ(Ωω1ω1) + ζ(Ω2ω1) (182)

ζ(ω1Ωω0) = −ζ(Ωω0ω1) (183)

The first is a depth-length shuffle. The second is obtained
by equating the depth-length and weight-length shuffles
for the product ζ(ω0)ζ(Ωω1), from whose difference the

6 They were all found by pslq, long before we found their
proofs
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divergent term then cancels. The third is a further exam-
ple of generalized duality. Solving the 10 equations (174)–
(183) we determine the 10 convergent sums of depth k > 1
in terms of singles sums and their products. Then Leonard
Lewin’s book [22] provides the proof that the p = 1 case of
(155) involves no new primitive, leaving ζ(3) in the p = 0
case as the sole candidate7 for a primitive trilogarithm in
A1 := {Ω, ω0, ω1}.

6.2.3 Algebraic reductions in Aλ

Here we give an algebraic method that determines 123 of
the 126 convergent double sums in the real and imaginary
parts of three-letter words of the full alphabet, Aλ. The
tally of double sums comprises 36+32 from real and imag-
inary parts of ζ(Ωωpωr), and 30+28 from ζ(ωpΩωr) with
p 6= 0. We are able to reduce all 66 real parts and 57 of
the 60 imaginary parts, by systematic computer algebra,
as follows.

The first step is to use the weight-length shuffles

ζ(ωp)ζ(Ωωr) = ζ(ωpΩωr) + ζ(Ωωpωr)
+ζ(Ωωrωp) (184)

to eliminate all instances of ζ(ωpΩωr), including those
with p = 0. Then one may use all 36 of the complex depth-
length shuffles

ζ(ωp)ζ(Ωωr) = ζ(ωpΩωp+r) + ζ(Ωωrωp+r)

+ζ(Ω2ωp+r) (185)

since in those with p = 0 the divergence on the left is
cancelled, algebraically, by the weight-length-shuffle de-
termination (184) of the first term on the right.

Solving the 36 equations for the 36 complex unknowns,
one finds that precisely 5 are left undetermined by the pair
of shuffle algebras. All 5 remaining real parts are then de-
termined by the complex conjugation (130). Of the 5 re-
maining imaginary parts, one is determined by the gener-
alized duality (132) and a second by the generalized dupli-
cation (134). Of the 3 that now remain, 2 cannot possibly
be determined by the pair of shuffle algebras, since (167),
(169) entail primitives, for which one requires the analysis
of Sect. 8.4.3 of [22].

Finally, just one of 126 reductions achieved empiri-
cally awaits rigorous proof. It may be taken as (170). One
should not be surprised that the algebra above has, as yet,
failed to bring this last sheep into the fold of the proven.
We know from the example of (129) that there are word
transformations which increase the depth of sums. Hence
it is eminently possible that a relation between double
sums requires for its proof the application of the machin-
ery of Sects. 5.1–5.3 to the triple sums to which it may be
promoted.

Here we comment on the reliability of the algebraically
unproven and numerically very secure result in (170), dis-
covered by applying pslq to 30-digit data. Let us suppose

7 That ζ(3)/π3 is not a rational seems to be as far from the
possibility of proof as it is from doubt

that pslq is merely a “black box” and ignore its diagnos-
tic messages (which, incidentally, say that 30 digits are
not needed to be confident of the result). This black box
has made a prediction, namely that if we compute the
31st digit of the left-hand side of (170) it will agree with
that from the right. That would be a weak test, since the
probability of a bogus reduction agreeing with the new
calculation would be 1/10. But now we compute the left-
hand side to 100-digit precision and find that it agrees
with the 70 new digits predicted by the right-hand side. If
one applied this methodology to reduce 1070 such sums,
one would be unlucky to encounter more than one mistake
attributable to pslq.

6.2.4 Generalized parity conjecture

We are led, by the previous results, to suggest a general-
ization of the parity conjecture for EZ sums. In the EZ
case, the parity conjecture supposes8 that no new primi-
tive appears at depth k and weight n > 1 if the number
of Ω’s, i.e. n − k, is odd. So far our experience is consis-
tent with the possibility that the real part of a sum in Aλ

reduces when n − k is odd, and the imaginary part when
n − k is even. We refer to this as the generalized parity
conjecture. The four sectors investigated thus far motivate
it, as follows.

1. At n = 2 and k = 1, the real parts in (142) reduce
to π2, while the imaginary parts give the primitive
Cl2(π/3).

2. At n = 3 and k = 1, the imaginary parts in (155)
reduce to π3, while the real parts give the primitive
ζ(3).

3. At n = 2 and k = 2, the imaginary parts in Table 3
involve no new primitive, while the real parts contain
Li2( 1

4 ).
4. At n = 3 and k = 2, the algebra of Sect. 6.2.3 re-

duces all the real parts, while the imaginary parts
(167), (169) contain the primitives = Li3(i/

√
3) and

= Li3(λ/2).

Thus at n = k = 3 we expect no new primitive in the
imaginary parts and eagerly await the appearance of < Li3
(i/

√
3) and < Li3(λ/2) as new primitives in the real parts.

6.2.5 Reductions to exponentially convergent single sums

It is particularly convenient that the primitive words of Aλ

at weight n = 3 and depth k = 2 are determined by the
exponentially convergent single sums (158), (159). This
finding relates strongly to the work on polylogarithmic
ladders in [6], where we found transformations of EZ sums
to polylogarithms inside the unit circle, whose arguments
satisfy z8 = 2−4k with k ∈ {1, 3, 5}. That work yielding
the ten millionth hexadecimal digits of ζ(3) and ζ(5), just
as the simpler results for {π, π2, log 2, log2 2} in [12] led

8 This is proven for weights n ≤ 8, by massive use of com-
puter algebra
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to rapid computation at weights n ≤ 2. We proved that
Catalan’s constant is also in the class SC∗(2) of numbers
with a dth binary digit computable in time = O(d logT d)
and space = O(logS d). For the base-2 cases of [6] one has
[12] T ≤ 3 and S = 1.

Combining the previous and present work, we see a
more general pattern of rapid computability emerging,
with transformations of words in Aλ to polylogarithms
with arguments satisfying z24 = 2−j3−k. We were alerted
to this possibility at weight n = 2, where transformations
of dilogarithms [22] yield

Li2(i/
√

3) = −1
8
(2 log 2 − log 3)2 − 1

4
Li2(

1
4
)

− i

12
π log 3 +

5i

6
Cl2(π/3) (186)

Li2(λ/2) =
1
72

π2 +
1
4

Li2(
1
4
)

− i

6
π log 2 +

5i

6
Cl2(π/3) (187)

whose right-hand sides comprise two-letter words in Aλ. In
[6] we showed how to express π log 2 in terms of single sums
with z8 = 2−4k. Combining that work with the imaginary
part of (187), we derive the remarkable relation

0 = = {5 Li2(λ) − 6 Li2 (λ/2) + 12 Li2 (i/2)

−16 Li2

(
1 + i

2

)
+ 8 Li2

(
1 + i

4

)}
(188)

with only Cl2(π/3) := = Li2(λ) appearing on the unit cir-
cle, while the other terms have z24 = 2−12k with k ∈
{1, 2, 3}.

Even simpler than (188) is the relation of Cl2(π/3)
to exponentially convergent dilogarithms with z12 = 3−6,
which is

0 = =
{

Li2(λ) + 6 Li2
(√

λ/3
)

− 6 Li2
(
i/

√
3
)}

(189)

yielding the SC∗(3) result (17) for the two-loop constant
(15).

These findings suggest a strategy for identifying prim-
itives in Aλ: to seek integer relations between n-letter
words and Lin(z) with z24 = 2−j3−k, and more especially
z24 = 2−12k or z12 = 3−6k. Here, for example, are three
significant findings at weight n = 3:

Li3

(
1
4

)
=

1
9
π2 log 2 − 35

18
ζ(3)

+8< Li3 (λ/2) (190)

< Li3
(√

λ/3
)

= − 5
144

π2 log 3 +
1
48

log3 3

+
13
18

ζ(3) (191)

= Li3
(√

λ/3
)

= − 29
6480

π3 +
1

240
π log2 3

+
4
5

= Li3
(
i/

√
3
)

(192)

They show that Li3( 1
4 ) and Li3(

√
λ/3) give words of Aλ,

since each reduces to (160).
We surmise that the link between DEZ sums and poly-

logs inside the unit circle is similar to that for EZ sums in
[6]: at low weights we find relations between polylogs with
z24 = 2−j3−k; at higher weights we expect the relations
to peter out, with more DEZ primitives coming from this
source. For the present, there is a strong indication that
we already have enough primitives on board to complete
the investigation at weight n = 3.

6.2.6 Three-letter triple sums

Since we are primarily concerned with identifying prim-
itives, we may ignore the product terms in the shuffles
algebras, and also the final term in (118), which has lesser
depth. Thus the algebraic problem for three-letter triple
sums is to solve

ζ(ωpωp+qωp+r) + ζ(ωqωp+qωp+r)
+ ζ(ωqωrωp+r) ∼ 0 (193)

ζ(ωpωqωr) + ζ(ωqωpωr)
+ ζ(ωqωrωp) ∼ 0 (194)

where ∼ means modulo products and terms of lesser depth.
The weight-length shuffle (194) is solved by choosing a
Lyndon basis. This reduces the 216 words to 70. Solving
the 216 depth-length shuffles (193) for the 70 complex un-
knowns, we find that precisely 2 are undetermined. Then
complex conjugation determines the imaginary parts of
the remaining two, thereby confirming the prediction of
the generalized duality conjecture. No further algebraic
identity in Sect. 5 determines the two real parts, which
are hence candidate primitives at n = k = 3.

To see if the two undetermined real parts are indeed
primitive, we may study the pair of integrals with σ2 = 1
in

Xσ :=
1
4

∫ 1

0
dy log(1 + σy + y2)

d

dy
log2

(
1 + y

2

)
(195)

which are easily evaluated to 100 digits, as they have good
behaviour at the endpoints. Then pslq finds that

< ζ(ω2
3ω2) = X1 =

1
36

π2 log 2 − 1
6

log3 2

−1
3
ζ(3) + < Li3(λ/2) (196)

< ζ(ω2
3ω1) = X−1 =

1
144

π2(4 log 2 − log 3)

− 1
48

(12 log2 2 − log2 3) log 3

− 1
18

ζ(3) − X1 − < Li3(i/
√

3) (197)

confirming that (160) is a viable basis at n = 3. By rig-
orous computer algebra we have shown that there are no
more than 5 new constants entailed by double and triple
sums of weight n = 3. The 5 empirical reductions (167),
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(169), (170), (196), (197) then relate the algebraically un-
determined terms to ζ(3) and the real and imaginary parts
of the two exponentially convergent complex trilogarithms
in (160). Moreover, pslq found no integer relation within
this set of constants, which is the best that one can hope
to say about primitives, in the foreseeable future.

Thus we are done with three-letter words. There is
one real primitive, ζ(3) at depth k = 1, and two com-
plex primitives, Li3(i/

√
3) and Li2(λ/2), whose imaginary

parts enter at k = 2, with the real parts postponed until
k = 3, in line with the generalized duality conjecture. Nei-
ther the Deligne sub-alphabet, A1 := {Ω, ω0, ω1}, nor the
Euler-Zagier sub-alphabet, A3 := {Ω, ω0, ω3}, entails the
complex pair. The present analysis, combined with [6], re-
sults in the remarkable finding that all 800 real and imag-
inary parts of words in Aλ with less than 4 letters have
finite parts reducible to SC∗ constants and their products.

6.3 Four-letter words in field theory

In Sect. 6.2, life was comparatively easy: all words with
3 letters were expressible as single integrals of the form∫ 1
0 dy A(y) B(y) dC(y)/dy, where A, B, C were simple logs,

or their imaginary parts: arctangents. Now, with 4-letter
words, we encounter less pleasant things, since one of the
trio A, B, C becomes a dilog. If it is C, things are not too
bad. If it is A or B, as occurs more often, the time re-
quired to compute the word increases. Moreover we need
the results to higher precision than before, because the
size of the basis has grown, due to the proliferation of
product terms. Three things help us to surmount these
computational problems.

First, the pair of shuffles algebras greatly reduces the
number of words that we need to study, allowing us to
choose the undetermined terms as those most easily calcu-
lated. Secondly, maple has a convenient implementation
of high-precision one-dimensional quadrature, enabling
fast evaluation when the endpoint behaviours are benign.
Finally, pslq revealed yet more features of the extraor-
dinary relation between primitives of the shuffle algebras,
Feynman diagrams, and super-fast computability in bases
2 and 3.

6.3.1 Rapid computability of the Clausen-Deligne primitive

For weight-4 sums with depth k = 1, we obtain 4-letter
words with 3 Ω’s:

ζ(Ω3ωp) = Li4(λp) =


1
90π4 for p = 0

91
19440π4 + iCl4(π/3) for p = 1

− 13
2430π4 + 8i

9 Cl4(π/3) for p = 2
− 7

720π4 for p = 3
(198)

where Cl4(π/3) :=
∑

n>0 sin(πn/3)/n4 is presumed prim-
itive. Its occurrences at p = 1 and p = 2 are related by

Cl2m(π/3) =
(
1 + 21−2m

)
Cl2m(2π/3) (199)

which was used in (142) and in the definition (15) of the
constant S2 in the finite part of the 2-loop vacuum dia-
gram with 3 masses [8,10,11].

In general, the real parts at depth k = 1 and even
weight n = 2m come from [22]

(2m)!
π2m

< ζ(Ω2m−1ωp) (200)

=


2(−4)m−1B2m for p = 0

(21−2m − 1)(31−2m − 1)(−4)m−1B2m for p = 1
(31−2m − 1)(−4)m−1B2m for p = 2
(22−2m − 2)(−4)m−1B2m for p = 3

with the Bernoulli number B4 = − 1
30 giving the real parts

in (198). In the case of ζ(Ω2mωp) one encounters ζ(2m+1)
in the real parts and π2m+1 in the imaginary parts. Hence,
at each weight n > 1, a single depth-1 constant is pre-
sumed to be primitive: at odd n it comes from Riemann;
at even n from Clausen. Euler-Zagier sums are real and
so do not involve the Clausen sum, which is however en-
tailed by the Deligne sub-alphabet, at depth k = 1 and, by
generalized duality, at maximum depth. Hence we charac-
terize

−= ζ(ω1ω
2m−1
0 ) = = ζ(Ω2m−1ω1)

= Cl2m(π/3) :=
∑
r>0

sin(πr/3)
r2m

(201)

as a Clausen-Deligne primitive of depth k = 1 and weight
n = 2m.

The next objective is to find a computationally more
convenient representation of Cl4(π/3), as the imaginary
part of an exponentially convergent quadrilogarithm, with
z24 = 2−j3−k, inside the unit circle. We then expect to
encounter the real parts of such quadrilogarithms as prim-
itives in the Feynman sector, with weight n = 4 and depth
k = 2. At weight n = 2, the dilogs (186), (187) serve a
similar purpose, since each generates both two-letter prim-
itives. We do not expect the n = 4 case to show so much
redundancy.

As an intermediate step, we can use the representation

Cl4(π/3) = − 1
4
√

3

∫ 1

0

dy log3(y)
1 − y(1 − y)

=
√

3
∑
n>0

h3
1(n) + 3h1(n)h2(n) + 2h3(n)

6n
(2n

n

) (202)

with finite sums hr(n) :=
∑2n−1

s=n s−r, obtained by ex-
panding in y(1 − y) and taking the third differential of an
Euler Beta function. Updating all values in a single expo-
nentially convergent loop, we obtained a 1000-digit value
in a few seconds.

As a target we chose the 5 independent imaginary parts
of Li4(z) with z12 = 3−6, since 2 such arguments figured
in (189) at weight n = 2, and in (192) at n = 3. Working
at 150-digit precision, pslq found that∑

n≥0

(
− 1

27

)n{ 9
(6n + 1)4

− 15
(6n + 2)4

− 18
(6n + 3)4
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− 5
(6n + 4)4

+
1

(6n + 5)4

}
(203)

=

√
3
4

(
44
3

Cl4(π/3) − 29
216

π3 log 3 +
1
24

π log3 3
)

with an element of SC∗(3), on the left, expressed in terms
of the imaginary parts of 4-letter words, up to the pre-
dictable factor of sin(π/3), already observed in the imag-
inary parts of (158), (159) at weight n = 3, and in defini-
tion (15) at n = 2. We have checked that (204) correctly
predicts the next 850 digits of Cl4(π/3), obtained from the
proven result (202).

It is instructive to compare (204) with the correspond-
ing result at weight n = 2:

∑
n≥0

(
− 1

27

)n{ 9
(6n + 1)2

− 15
(6n + 2)2

(204)

− 18
(6n + 3)2

− 5
(6n + 4)2

+
1

(6n + 5)2

}
=

√
3
4

π log 3

which shows that sin(π/3) π log 3 ∈ SC∗(3). Already we
see a realization of the hope that the relation between
SC∗(3) and Aλ will help us to identify primitives: the in-
teger coefficients on the left of (205) that give merely a
product term at n = 2 yield a primitive in (204) at n = 4.
This observation proves extremely useful in Sect. 6.3.3

Having thus found the connection of quadrilogs with
z12 = 3−6 to the 4-letter Clausen-Deligne primitive at
depth k = 1, we move on to study the real parts at k =
2, where Feynman diagrams have already generated two
presumed primitives: U3,1 and V3,1 in the basis (117) for
the vacuum diagrams of Table 2.

6.3.2 Feynman rules OK: no more depth-2 primitives

There are 108 four-letter depth-2 words. The 36 of type
ζ(ωpΩ

2ωr) may be eliminated by the weight-length shuf-
fles of ζ(ωp) with ζ(Ω2ωr); the 36 of type ζ(ΩωpΩωr) by
the corresponding depth-length shuffles. The remaining 36
of type ζ(Ω2ωpωr) are reduced to 7 by the weight-length
and depth-length shuffles of ζ(Ωωp) with ζ(Ωωr). The 7
remaining imaginary parts are then determined by the
complex conjugation (130), leaving only real parts, con-
sistent with the generalized parity conjecture. Of these 7
real parts, one is determined by the generalized duplica-
tion (134) and another by the triplication (135). Of the 5
real parts that now remain, we account

U3,1 :=
∑

m>n>0

(−1)m+n

m3n
= ζ(Ω2ω3ω0) (205)

V3,1 :=
∑

m>n>0

(−1)m cos(2πn/3)
m3n

= < ζ(Ω2ω3ω1) (206)

as Feynman primitives, since we encountered them in the
calculation of vacuum diagrams, computed them to 1000
digits, and found no reduction to products, using pslq.

There thus remain 3 real parts to consider. They are
undetermined by the algebraic methods used so far, but
need not be new primitives. In Sect. 6.2.3 we noted that
there are relations beyond those derivable from shuffles,
complex conjugation, duplication and triplication, attri-
butable to the interplay of these with word transforma-
tions (127), (132), since the latter change the number of
Ω’s and hence the depth. It follows that at a given depth
there can be reductions that are apparent only after one
applies the full algebraic machinery to all depths. This is
where pslq is of such enormous benefit: rather than hav-
ing to solve, simultaneously, for 2×74 = 4802 unknowns, in
the real and imaginary parts of all 4-letter words, we break
up the problem by depth, relying on the lattice algorithm
to find the small percentage (in this case 3

214 < 1.5%) of
reductions that we miss by staying at fixed depth. Since
we miss so little by staying in a fixed sector, the small
amount of numerical investigation can focus on the most
easily computable of those sums which partial (though al-
ready very powerful) algebra has left undetermined.

Accordingly, we evaluated to 100-digit precision the
4 conveniently well-behaved, dilog-free, quadrilogarithmic
integrals with σ2 = τ2 = 1 in

Yσ,τ :=
1
4

∫ 1

0
dy log2(y) log(1 − σy)

d

dy

× log(1 + τy + y2) (207)

with the duplication relation Y1,1 = 4
∑

σ,τ Yσ,τ provid-
ing a good check of accuracy. The algebraic reductions of
211 of the 216 real and imaginary parts then prove that
the question whether the 2 Feynman primitives suffice, at
depth k = 2, is identical to asking whether 3 instance of
(207) are reducible to (205), (206) and/or product terms.
According to pslq, Feynman rules OK, with

< ζ(Ω2ω2ω0) = Y1,1 =
127

29160
π4 − 4

9
Cl22(π/3)

+
4
3

V3,1 (208)

< ζ(Ω2ω1ω0) = Y1,−1 =
1

3240
π4 (209)

< ζ(Ω2ω2ω3) = Y−1,1 = − 17
2592

π4 +
7
9

ζ(3) log 2

−4
9

U3,1 (210)

< ζ(Ω2ω1ω3) = Y−1,−1 = −3
4

Y1,1 − Y1,−1 − Y−1,1 (211)

found easily at 50-digit precision, and then tested strin-
gently by the next 50 digits.

Note that the simple reduction (209) is entirely as ex-
pected: the word is in the Deligne sub-alphabet, where
the generalized duality (132) immediately promotes it to
depth k = 3. We have every confidence that its reducibil-
ity is provable by application of algebra at depths k > 2,
just as (165), obtained empirically at depth k = 2 in
Sect. 6.2.1, was later proven by algebra at depth k = 3
in Sect. 6.2.2. However, we are content to have completed
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the analysis of over 1 000 real and imaginary parts relevant
to the 3-loop Feynman sector, by restricting attention to
weights n ≤ 4, and to depths k ≤ 2 at weight n = 4. We
beg the reader’s pardon for postponing analysis of over
4 000 cases, with n = 4 and k ≥ 3, to a later occasion,
when quantum field theory is not the pressing issue.

In conclusion: we are done with enumeration of primi-
tive 4-letter words at depth k = 2. There are precisely two.
Feynman found them both, way back in Table 2. Neither is
in the Deligne sub-alphabet. Neither occurs with 3 masses.
One is in the Euler-Zagier sub-alphabet and occurs only
when the number of masses is even; the other is not in the
Euler-Zagier sub-alphabet and occurs only with 5 masses.

6.3.3 Number and topology in the Feynman sector

In the Feynman sector, with weight n = 4 and depth k =
2, two questions remain:

Q1: Are the quadrilogarithms from all 10 Feynman dia-
grams reducible to elements of SC∗(3) ∪ SC∗(2) and
their products?

Q2: If so, how does the base of super-fast computation,
b = 2 or b = 3, relate to the way in which mass colours
the Feynman tetrahedron?

The first issue to address is the status of π4. We know
from [12] that π4 is the square of an SC∗(2) constant, and
very recently learnt in [6] that π4 ∈ SC∗(2), which is a
highly non-trivial result, since there is no indication that
multiplication is allowed in SC∗. Indeed the polylogarith-
mic ladders of [6] suggest that π6 is not in SC∗(2). Now
we add

27
2

π2 =
∑
n≥0

(
1

729

)n{ 243
(12n + 1)2

− 405
(12n + 2)2

− 81
(12n + 4)2

− 27
(12n + 5)2

− 72
(12n + 6)2

− 9
(12n + 7)2

− 9
(12n + 8)2

− 5
(12n + 10)2

+
1

(12n + 11)2

}
(212)

to the jigsaw puzzle. It shows that π4 is the square of a
constant in SC∗(3). So is Cl22(π/3), since (17) shows that√

3 Cl2(π/3) ∈ SC∗(3). From (18), (55) we conclude that
U3,1 ∈ SC∗(2). Hence we need only investigate the 5-mass
primitive V3,1.

There is a clear SC∗(3) candidate for a relation to V3,1.
Noting that an increase in weight from n = 2 in (205) to
n = 4 in (204) promoted a product to a primitive, we
increased the weight in (212) and obtained V3,1 in associ-
ation with products, with

59
48

π4 +
27
16

π2 log2 3 +
135
2
(
Cl22(π/3) − 3 V3,1

)
=
∑
n≥0

(
1

729

)n{ 243
(12n + 1)4

− 405
(12n + 2)4

− 81
(12n + 4)4

− 27
(12n + 5)4

− 72
(12n + 6)4

− 9
(12n + 7)4

− 9
(12n + 8)4

− 5
(12n + 10)4

+
1

(12n + 11)4

}
(213)

checked to 1000 digits, using the value for V3,1 from
Sect. 6.2.1. Since π4 and Cl22(π/3) are squares of SC∗(3)
constants, only the status of π2 log2 3 in (213) remains an
issue. It is clear that

log 3 =
∑
n≥0

(
1

729

)n+1{ 729
(6n + 1)

+
81

(6n + 2)
+

81
(6n + 3)

+
9

(6n + 4)
+

9
(6n + 5)

+
1

(6n + 6)

}
(214)

is an SC∗(3) constant, like the weight-1 constant
√

3π of
massive Feynman diagrams [37]. We now wind (214) up
to weight n = 2, where the corresponding relation is

1
2

log2 3 = ζ(2) −
∑
n≥0

(
1

729

)n+1

×
{

729
(6n + 1)2

+
81

(6n + 2)2
+

81
(6n + 3)2

+
9

(6n + 4)2
+

9
(6n + 5)2

+
1

(6n + 6)2

}
(215)

which shows that log2 3 ∈ SC∗(3), since (212) gives ζ(2) =
1
6π2 ∈ SC∗(3). Thus (213) shows that the second Feynman
primitive, V3,1, consists of an SC∗(3) constant and prod-
ucts of pairs of SC∗(3) constants. So therefore does the
quadrilogarithm in the 5-mass diagram. Thus the answers
to the questions above are as follows.

A1: Remarkably, all 10 quadrilogarithms reduce to elements
of SC∗(3) ∪ SC∗(2) and their products. It follows that
evaluation of their decimal values is fairly (though not
super) fast. We obtained 10 000 decimal places, at a
cost of 25 seconds/diagram, on a 333 MHz worksta-
tion.

A2: The quadrilogarithms in {V1, V2A, V3T } are multiples
of π4 ∈ SC∗(2), which is also the square of π2 ∈
SC∗(3). Those in {V2N , V4N} are constants in SC∗(2);
those in {V3S , V3L, V4A} are sums of squares of con-
stants in SC∗(3). The 5-mass case reduces to SC∗(3)
constants and their products; the 6-mass case to an
SC∗(2) constant and the square of an SC∗(3) constant.
The primitive U3,1 ∈ SC∗(2) does not occur when the
number of masses is odd; the other primitive, V3,1, is
unique to the 5-mass case.

7 Conclusions

We have come a long way, from the innocent idea of iden-
tifying analytically the unknown quadrilogarithm in the
3-loop QCD corrections to the rho-parameter [4,5] of the
standard model, to an investigation of the shuffle alge-
bras of polylogarithms of the sixth root of unity, revealing
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a very small number of primitives that take values from
constants in SC∗(3) ∪ SC∗(2) and their products. Along
that route, it was quantum field theory that led us, by
wonderfully simple results of decidedly non-trivial calcu-
lations, still only partially elucidated by painstaking anal-
ysis. The following features seem the most remarkable.

First, who would have imagined that three-loop Feyn-
man diagrams with 3 masses are simpler than those with 2
masses? With 2 masses, Table 2 shows that we already en-
gage with a primitive four-letter word of the sub-alphabet
of Euler-Zagier sums; yet with 3 masses we merely pick
up the squares of constants already encountered as two-
letter words, at two loops. The origin of the simplicity of
3-mass diagrams appears to be the superiority of the prim-
itive sixth root of unity over the primitive square root: the
Deligne sub-alphabet has a simpler generalization (132) of
the Zagier duality (131) than that in (127) for the Euler-
Zagier sub-alphabet. It seems that the star-triangle-line
relation (89) is an expression of this: real parts of 4-letter
Deligne words entail only the products π4 and Cl22(π/3) at
depth k = 2; these are the only constants that appear with
3 masses, which is why a relation exists. The result, 3 stars
= triangle + 2 lines, cries out for an explanation of why
3-mass diagrams entail only the Deligne sub-alphabet and
why the integers in the ensuing relation have such simple
values. Such simplicity is far from apparent in (68), proven
by a dispersion relation.

Next, who would have imagined that with 4 masses
no new constant is entailed? Table 2 shows that it is
the topology of the diagram that determines the previ-
ously known case to which one reverts. When the two
massless lines are adjacent one reverts to the simplicity of
3-mass cases, entailing reducible words from the Deligne
sub-alphabet; when they are non-adjacent one reverts to
the primitive four-letter word of the Euler-Zagier sub-
alphabet, as found in the 2-mass case when the massive
line were non-adjacent, with now a double measure, for
double the number of masses.

Then, who would have imagined that while 5 = 3 + 2
masses entails a new primitive, 6 = 3×2 masses is far sim-
pler? The totally massive case yields only the Euler-Zagier
constants ζ(4) and U3,1, already found with 2 masses, and
the square of the Clausen-Deligne constant Cl2(π/3), al-
ready seen with 3 masses, at merely two loops. This last
finding shows that the current state of the art lags far be-
hind the simplicity of the results. Until this work, it had
proven too arduous an undertaking to identify even the
simple sum of squares (Cl2(π/3))2+

( 1
2ζ(2)

)2 = ζ(3)− 1
6D3

in the 3-mass quadrilogarithm that provides the value for
D3 := V 3L in the 3-loop QCD corrections to the rho-
parameter [4,5]. Despite the much more formidable ob-
stacle posed by the Cutkosky rules for the 6-mass case,
double integration by nag and an integer-relation search
by pslq finally revealed the totally massive beast to be a
beauty. It was scarcely to be expected that the convolu-
tion of a dilogarithm with an elliptic integral of the third
kind would yield merely the unit coefficients of the integer
relation (115), reducing the 6-mass case to those with 4 or
less. Now one sees why Leo Avdeev’s thorough analysis of

integration by parts [3] found no route from 6 masses to 5,
nor from 5 to 4. There can be none, since the 5-mass case
is the only one to entail the second Feynman primitive.

Finally, who would have imagined that the primitives
left undetermined by the shuffle algebras would entail only
the classes SC∗(2) and SC∗(3) of super-fast computabil-
ity? Diagrams with 2 masses choose SC∗(2); those with
3 choose SC∗(3); that with 6 = 3 × 2 masses chooses
SC∗(3) ∪ SC∗(2). One clearly needs to decode this map-
ping from the 10 colourings of a tetrahedron, by mass, to
the base of super-fast computation of the constants that
field theory assigns to those colourings.

Truly the adage “Out of field theory always something
new” has been confirmed. I hope that I have spelt out
enough of the very recently discovered detail to convince
mathematical colleagues that we physicists sit on top of
a structural gold mine, and fellow physicists that we have
much to learn about the relation between the free in-
vestigations of mathematics and the tightly constrained
structure of perturbative quantum field theory in four-
dimensional spacetime.
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